PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weak nearly uniform soothness and worth property of [fi]-direct sums of Banach spaces

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We shall characterize the weak nearly uniform smoothness of the fi-direct sum X Y of Banach spaces X and Y . The Schur and WORTH properties will be also characterized. As a consequence we shall see in the [...]-sums of Banach spaces there are many examples of Banach spaces with the fixed point property which are not uniformly non-square.
Twórcy
autor
autor
Bibliografia
  • [1] B. Beauzamy, Introduction to Banach Spaces and their Geometry, 2nd ed., North-Holland, Amsterdam, 1985.
  • [2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, New York-London, 1973.
  • [3] S. Chen, Y. Cui, H. Hudzik and B. Sims, Geometric properties related to fixed point theory in some Banach function lattices, In: Handbook of Metric Fixed Point Theory, eds. W. A. Kirk and B. Sims, Kluwer, Dordrecht, 2001, pp. 339-389.
  • [4] Y. Cui and H. Hudzik and Y. Li, On the Garcia-Falset coefficient in some Banach sequence spaces, Lecture Notes in Pure and Appl. Math., No. 213, Marcel Dekker, New York, 2000, pp. 141-148.
  • [5] S. Dhompongsa, A. Kaewkhao and S. Saejung, Uniform smoothness and U-convexity of - direct sums, J. Nonlinear Convex Anal. 6 (2005), 327-338.
  • [6] S. Dhompongsa, A. Kaewcharoen and A. Kaewkhao, Fixed point property of direct sums, Nonlinear Anal., to appear.
  • [7] P. N. Dowling, On convexity properties of -direct sums of Banach spaces, J. Math. Anal. Appl. 288 (2003), 540-543.
  • [8] P. N. Dowling and B. Turett, Complex strict convexity of absolute norms on and direct sums of Banach spaces, to appear in J. Math. Anal. Appl.
  • [9] J. Garcia-Falset, Stability and fixed points for nonexpansive mappings, Houston J. Math. 20 (1994), 495-506.
  • [10] J. Garcia-Falset, The fixed point property in Banach spaces with the NUS-property, J. Math. Anal. Appl. 215 (1997), 532-542.
  • [11] J. Garcia-Falset, E. Llorens-Fuster and E. Mazcuñan-Navarro, Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings, to appear in J. Funct. Anal.
  • [12] J. Garcia-Falset, E. Llorens-Fuster and B. A. Sims (eds.), Fixed Point Theory and Applications, Yokohama Publishers, Yokohama, 2004.
  • [13] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Univ. Press, Cambridge, 1990.
  • [14] C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
  • [15] A. Jiménez and E. Llorens-Fuster, The fixed point property for some uniformly nonsquare Banach spaces, Boll. Unione Mat. Ital. (7) 10-A (1996), 587-595.
  • [16] M. Kato, K.-S. Saito and T. Tamura, On -direct sums of Banach spaces and convexity, J. Aust. Math. Soc. 75 (2003), 413-422.
  • [17] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of -direct sums of Banach spaces X _ψ Y , Math. Inequal. Appl. 7 (2004), 429-437.
  • [18] M. Kato, K.-S. Saito and T. Tamura, Uniform non-l -ness of -direct sums of Banach spaces X _ψY , preprint.
  • [19] M. Kato and T. Tamura, Some geometric conditions related to fixed point property, In: Banach and Function Spaces, eds. M. Kato and L. Maligranda, Yokohama Publishers, Yokohama, 2004, pp. 243-253.
  • [20] D. Kutzarova, S. Prus and B. Sims, Remarks on orthogonal convexity of Banach spaces, Houston J. Math. 19 (1993), 603-614.
  • [21] E. Llorens-Fuster, Moduli and constants, preprint, URL:http://www.uv.es/llorens/ Documento.pdf.
  • [22] E. Llorens-Fuster, Some moduli and constants related to metric fixed point theory, In: Handbook of Metric Fixed Point Theory, eds. W. A. Kirk and B. Sims, Kluwer, Dordrecht, 2001, pp. 133-175.
  • [23] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
  • [24] K. Mitani, S. Oshiro and K.-S. Saito, Smoothness of -direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147-157.
  • [25] S. Prus, Nearly uniformly smooth Banach spaces, Boll. Un. Mat. Ital. (7) 3-B (1989), 507-521
  • [26] K.-S. Saito and M. Kato, Uniform convexity of -direct sums of Banach spaces, J. Math. Anal. Appl. 277 (2003), 1-11.
  • [27] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on C2, J. Math. Anal. Appl. 244 (2000), 515-532.
  • [28] K.-S. Saito, M. Kato and Y. Takahashi, On absolute norms on Cn, J. Math. Anal. Appl. 252 (2000), 879-905.
  • [29] B. A. Sims, Orthogonality and fixed point of nonexpansive mapping, Proc. Centre for Math. Anal. Austral. Nat. Univ. 20, Austral. Nat. Univ., Canberra, 1988, pp. 178-186.
  • [30] B. A. Sims, A class of spaces with weak normal structure, Bull. Austral. Math. Soc., 50 (1994), 523-528.
  • [31] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on C2 and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179-186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0004-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.