Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Simultaneous testing procedures of many null hypotheses and their applications in the DNA microarrays analysis
Języki publikacji
Abstrakty
W naszej pracy rozważamy różne podejścia do problematyki jednoczesnego testowania wielu hipotez zerowych. W tym kontekście omawiamy procedury testowania typu single-step, step-down i step-up. W szczególności, przedstawiamy własności i zastosowania takich miar błędów testowania, jak: FWER, k-FWER, FDP, FDR, pFDR. Wspomniane procedury testowania są intensywnie wykorzystywane w analizie mikromacierzy DNA, która to analiza umożliwia monitorowanie poziomów ekspresji wielu genów jednocześnie oraz znajduje ostatnio szerokie zastosowania w diagnostyce, leczeniu i badaniach medycznych.
In our paper, we consider different approaches to the problem of simultaneous testing of many null hypotheses. In this context, we discuss the single-step, the step-down and the step-up procedures of multiple testing. In particular, we are concerned with their properties and applications in the control of the error rates, such as: FWER, k-FWER, FDP, FDR, pFDR. The mentioned procedures are intensively used in the DNA microarrays analysis, which enables the monitoring of expression levels of many genes simultaneously and is widely applied in recent medical diagnostics, treatment and research.
Wydawca
Rocznik
Tom
Strony
84--108
Opis fizyczny
bibliogr. 32 poz.
Twórcy
autor
autor
- Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW ul. Nowoursynowska 166 02-787 Warszawa, Poland, konfur@wp.pl
Bibliografia
- [1] D. B. Allison, G. L. Gadbury, M. Heo, J. R. Fernandez, C. K. Lee, T. A. Prolla, R. Weindruch, (2002), A mixture approach for the analysis of microarray gene expression data, Comput. Statist. Data Anal., 39, 1-20.
- [2] Y. Benjamini, Y. Hochberg, (1995), Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Statist. Soc. Ser. B 57, 289-300.
- [3] Y. Benjamini, D. Yekutieli, (2001), The control of the false discovery rate in multiple testing under dependency, Ann. Statist. 29, 1165-1188.
- [4] S. Dudoit, J. P. Shaffer, J. C. Boldrick, (2003), Multiple hypotethesis testing in microarray experiments, Statistical Science, 18 (1), 71-103.
- [5] B. Efron, R. Tibshirani, J. D. Storey, V. Tusher, (2001), Empirical Bayes analysis of a microarray experiment, J. Amer. Statist. Assoc. 96, 1151-1160.
- [6] J. A. Ferreira, A. H. Zwinderman, (2006), On the Benjamini-Hochberg method, Ann. Statist. 34, 1827-1849.
- [7] A. Gelman, (2003), A Bayesian formulation of explaratory data analysis and goodness-of-fit testing, International Statistical Review 71, 369-382.
- [8] C. Genovese, L. Wasserman, (2002), Operating characteristics and extensions of the false discovery rate procedure, J. Roy. Statist. Soc. Ser. B Stat. Methodol. 64, 499-518.
- [9] C. Genovese, L. Wasserman, (2004), A stochastic process approach to false discovery control, Ann. Statist. 32, 1035-1061.
- [10] Z. Guan, B. Wu, H. Zhao, (2004), Model-based to FDR estimation, Submitted.
- [11] Y. Hochberg, (1988), A sharper Bonferroni procedure for multiple tests of significance, Biometrica 75, 800-802.
- [12] S. Holm, (1979), A simple sequentialy rejective multiple test procedure, Scand. Journal Statist. 6, 65-70.
- [13] G. Hommel, (1986), Multiple test procedures for arbitrary dependence structures, Metrika 33, 321-336.
- [14] G. Hommel, T. Hoffman, (1988), Controlled uncertainity, in: Multiple Hypotheses Testing (P. Bauer, G. Hommel and E. Sonnemann, eds.), 154-161. Springer, Heidelberg.
- [15] R. Hubbard, M. J. Bayarii, (2003), P-values are not error probabilities. Available in Internet.
- [16] V. Iyer, S. Sarkar, (2007), An adaptive single-step FDR procedure with applications to DNA microarray analysis, Biometrical Journal 49, 127-135.
- [17] J. Koronacki, J. Mielniczuk, (2004), Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa.
- [18] E. L. Lehmann, (1957), A theory of some multiple decision problems, I. Ann. Statist. 28, 1-25.
- [19] E. L. Lehmann, J. P. Romano, (2005), Generalizations of the familywise error rate, Ann. Statist. 33, 1138-1154.
- [20] E. L. Lehmann, J. P. Romano, (2005), Testing Statistical Hypotheses, 3rd ed., Springer, New York.
- [21] E. L. Lehmann, J. P. Romano, J. Shaffer, (2005), On optimality of stepdown and stepup multiple test procedures, Ann. Statist. 33, 1084-1108.
- [22] K. S. Pollard, M. J. van der Laan, M. D. Birkner, S. Dudoit, (2005), Test statistics null distributions in multiple testing: simulation studies and applications to genomics, U. C. Berkeley Division of Biostatistics Working Paper Series, paper 184.
- [23] J. P. Romano, M.Wolf, (2005), Exact and aproximate stepdown methods for multiple hypothesis testing, J. Amer. Statist. Assoc. 100, 94-108.
- [24] J. P. Romano, A. M. Shaikh, (2006), Stepup procedures for Control of Generalizations of the Familywise Error Rate, Ann. Statist. 34, 1850-1873.
- [25] S. Sarkar, C. Chang, (1997), The Simes method for multiple hypothesis testing with positively dependent test statistics, J. Amer. Statist. Assoc. 92, 1601-1608.
- [26] R. Simes, (1986), An improved Bonferroni procedure for multiple tests of significance, Biometrika 73, 751-754.
- [27] J. Storey, (2002), A direct approach to false discovery rates, J. Roy. Statist. Soc. Ser. B Stat. Methodol. 64, 479-498.
- [28] J. Storey, (2003), The positive false discovery rate: A Bayesian interpretation and the q-value, Ann. Statist. 31, 2013-2035.
- [29] J. Storey, R. Tibshirani, (2003), Statistical significance for genomewide studies, PNAS, 1000, 9440-9445.
- [30] A. Victor, G. Hommel, (2007), Combining adaptive designs with control of the false discovery rate - a generalized definition for a global p-value, Biometrical Journal 49, 94-106.
- [31] J. D. Watson, A. Berry, (2005), DNA. Tajemnica życia, wyd. CiS oraz W. A. B., Warszawa.
- [32] P. H. Westfall, S. S. Young, (1993), Resampling-based multiple testing: Examples and methods for p-value adjustment, John Wiley & Sons.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0004-0010