PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Correlation analyses of Baltic Sea winter water mass formation and its impact on secondary and tertiary production

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal stratification of the upper water layers in the Baltic Sea varies seasonally in response to the annual cycle of solar heating and wind-induced mixing. In winter, the stratification down to the halocline is almost completely eroded by convection and strong wind mixing. Monthly averaged temperature profiles obtained from the ICES hydrographic database were used to study the long-term variability (1950 to 2005) of winter water mass formation in different deep basins of the Baltic Sea east of the island of Bornholm. Besides strong interannual variability of deep winter water temperatures, the last two decades show a positive trend (increase of 1-1.5°C). Correlations of winter surface temperatures to temperatures of the winter water body located directly above or within the top of the halocline were strongly positive until the autumn months. Such a close coupling allows sea surface temperatures in winter to be used to forecast the seasonal development of the thermal signature in deeper layers with a high degree of confidence. The most significant impact of winter sea surface temperatures on the thermal signature in this depth range can be assigned to February/March. Stronger solar heating during spring and summer results in thermal stratification of the water column leading to a complete decoupling of surface and deep winter water temperatures. Based on laboratory experiments, temperature-dependent relationships were utilised to analyse interannual variations of biological processes with special emphasis on the upper trophic levels (e.g., stage-specific developmental rates of zooplankton and survival rates of fish eggs).
Czasopismo
Rocznik
Strony
381--395
Opis fizyczny
bibliogr. 26 poz., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1].BALTEX,2006, Assessment of climate change for the Baltic Sea basin - The BACC project. Summary,The BACC Lead Author Group (eds.),In t. BALTEX Secr. Publ. No 35,2 6 pp.
  • [2].Baumann H.,Hinr ichsen H.-H., M¨ollmann C.,K ¨oster F.W.,Ma lzahn A.M., Temming A.,2006, Recruitment variability in Baltic sprat (Sprattus sprattus) is tightly coupled to temperature and transport patterns affecting the larval and juvenile stage,C an. J. Fish. Aquat. Sci., 63 (10),2191-2201.
  • [3].Campana S.E.,1996, Year-class strength and growth rate in young Atlantic cod Gadus morhua,M ar. Ecol. Prog. Ser., 135, 21-26.
  • [4].Cubasch U.,Meehl G.A.,Bo er G. J.,Sto uffer R. J., Dix M.,No da A.,Senio r C. A., Raper S.,Y ap K. S.,2001, Projections of future climate change,[in:] Climatechange 2001: The scientific basis,J. T. Houghton, Y. Ding,D . J. Griggs, M. Noguer,P . J. Lindenvan der, X. Dai, K. Maskell & C. A. Johnson (eds.), IPCC AR3,C ambridge,N ew York,525-582.
  • [5].Dippner J.W.,Kornilo vs G.,Sidrevics L.,2000, Long-term variability of mesozooplankton in the Central Baltic Sea,J. Marine Syst.,25 (1),23-32.
  • [6].Eiola K.,S tigebrandt A., 1998, Spreading of juvenile fresh-water in the Baltic proper,J. Geophys. Res., 103 (C12),27795-27807.
  • [7].Fowler A. J.,Jen nings P.R.,2003, Dynamics in 0+ recruitment and early life history for snapper (Pagrus auratus, Sparidae)in South Australia,Ma r. Freshwater Res.,54 (8),941-956.
  • [8].Hänninen J., Vuorinen I.,Hjelt P.,2000, Climate factors in Atlantic control the oceanographic and ecological changes in the Baltic Sea,Li mnol. Oceanogr., 45 (3),703-710.
  • [9].Hinrichsen H.-H.,J ohn S. M.,Lehma nn A.,Ma cKenzie B.R., K¨oster F.W.,2002a, Resolving the impact of short-term variations in physical processes impacting on the spawning environment of eastern Baltic cod: application of a 3-Dhydrodynamic model,J. Marine Syst.,32 (4),281-29.
  • [10].Hinrichsen H.-H.,M¨ollmann C.,V oss R., K¨oster F.W.,Korn ilovs G.,2002b , Biophysical modelling of larval Baltic cod (Gadus morhua L.)gr owth and survival,C an. J. Fish. Aquat. Sci.,59 (12),1858-1873.
  • [11].Klein-Breteler W.C.M., Gonzalez S.,S chogt N.,1995, Development of Pseudocalanus elongatus (Copepoda, Calanoida)cu ltured at different temperature and food conditions, Mar. Ecol. Prog. Ser.,119 (1-3),99-110.
  • [12].Klein-Breteler W.C.M.,S chogt N.,1994, Development of Acartia clausi (Copepoda, Calanoida)cu ltured at different conditions of temperature and food, Hydrobiologia,292-293 (1), 469-479.
  • [13].Köster F.W.,Möllmann C.,Hinrichsen H.-H., Wieland K.,Tomkiewicz J.,Kraus G.,Voss R.,Makarchouk A., MacKenzie B.R., St. John M.A.,Schnack D., Rohlf N., Linkowski T.,Beyer J.E.,2005, Baltic cod recruitment - the impact of climate variability on key processes,I CES J. Mar. Sci.,62 (7), 1408-1425.
  • [14].Köster F.W.,Möllmann C., Neuenfeldt S.,Vinther M.,St. John M.A., Tomkiewicz J., Voss R.,H inrichsen H.-H., MacKenzie B.,Kraus G.,Schnack D., 2003, Fish stock development in the central Baltic Sea (1974-1999)in relation to variability in the environment,I CES Mar. Sci. Symp., 219, 294-306.
  • [15].Kullenberg G.,1981, Physical oceanography in the Baltic Sea,A. Voipia (ed.), Elsevier,A msterdam, 135-181.
  • [16].Lehmann A.,Krau ss W., Hinrichsen H.-H.,2002, Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea,T ellus A, 54 (3),299-316.
  • [17].Limburg K.E.,1996, Growth and migration of 0-year American shad (Alosa sapidissima)in the Hudson River estuary: otolith microstructural analysis, Can. J. Fish. Aquat. Sci.,53 (1), 220-238.
  • [18].Möllmann C.,Kornilovs G., Sidrevics L.,2000, Long-term dynamics of main mesozooplankton species in the central Baltic Sea,J. Plankton Res., 22 (11), 2015-2038.
  • [19].Möllmann C.,Köster F.W.,2000, Food consumption by clupeids in the Central Baltic: Is there evidence for top-down control?,ICE S J. Mar. Sci., 56 (1), 100-113.
  • [20].Möllmann C.,Köster F.W.,Kornilovs G.,Sidrevics L.,2003, Interannual variability in population dynamics of calanoid copepods in the Central Baltic Sea, ICES J. Mar. Sci.,219 (2),220-230.
  • [21].Nissling A.,2004, Effects of temperature on egg and larval survival of cod (Gadus morhua)an d sprat (Sprattus sprattus) in the Baltic Sea - implications for stock development,H ydrobiologia, 514 (1-3), 115-123.
  • [22].Nissling A.,Müller A.,Hinrichsen H.-H.,2003, Specific gravity and vertical distribution of sprat (Sprattus sprattus)e ggs in the Baltic Sea,J. Fish Biol., 63 (2),280-299.
  • [23].Petereit C.,Haslob H.,Kraus G., Clemmesen C.,2007, The effect of temperature on the development of Baltic and North Sea sprat early life history,Ma r. Biol., (submitted).
  • [24].Schmidt J.O.,2006, Small and meso-scale distribution patterns of key copepod species in the Central Baltic Sea and their relevance for larval fish survival, Ph.D. thesis,Chr istian Albrechts Univ.,Kiel, 99 pp.
  • [25].Wieland K.,Zuzarte F.,1991, Vertical distribution of cod and sprat eggs and larvae in the Bornholm Basin (Baltic Sea)1987-1990 ,I CES CM 1991/J:37.
  • [26].Zeldis J.R.,Oldman J.,Ballara S. L., Richards L.A.,2005, Physical fluxes, pelagic ecosystem structure, and larval fish survival in Hauraki Gulf, New Zealand, Can. J. Fish. Aquat. Sci.,62 (3), 593-610.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0003-0074
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.