Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The relative roles of nitrogen and phosphorus in the limitation of phytoplankton growth in Narva Bay, south-eastern Gulf of Finland, were studied by combining the results of numerical modelling and nutrient enrichment experiments. Modelled biomass-based intracellular nutrient concentrations (nutrient functions) were used to estimate the limiting nutrient in Narva Bay. Nutrient functions - NF ? [0; 1] for nitrogen and PF ? [0; 1] for phosphorus - define the dependence of the phytoplankton growth rate on nutrients: NF = PF = 1 corresponds to non-limitation of phytoplankton growth by nutrients, whereas NF = 0 or PF = 0 to zero growth. The biotests indicated the response of phytoplankton growth to an increase in nutrient concentration in the surrounding water. Three locations were selected for detailed analyses of temporal variations in the nutrient functions: the offshore station N12, station N8 at the mouth of the River Narva, and coastal station 38. The biotests were performed at the same stations. NF and PF reached values of 0.9 prior to the spring bloom. With the onset of the spring bloom, NF decreased rapidly and remained below 0.1 in the open part of Narva Bay for the rest of that period. In the coastal zone, NF was in excess of 0.1, with a local maximum in the river mouth area. PF decreased to 0.3-0.4 in the open bay after the spring bloom. In the coastal zone PF remained above 0.4, with a certain increase from the midsummer minimum towards the end of summer. The numerical modelling results clearly show that nitrogen limits phytoplankton growth in Narva Bay. Phosphorus limitation may occur only for a limited period and over a limited area at the Narva River mouth and other coastal locations. In general, the biotests backed up the modelling results, the main exception being in the open bay during summer. The model does not account for nitrogen fixation, however. Since N-fixing cyanobacteria were prevalent in the offshore area, the addition of phosphorus led to enhanced phytoplankton growth at station N12.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
259--276
Opis fizyczny
bibliogr. 27 poz., tab., wykr.
Twórcy
autor
autor
autor
- Marine Systems Institute, Tallinn University of Technology, Akadeemia Rd. 21b, EE-12618 Tallinn, Estonia, gennadi@phys.sea.ee
Bibliografia
- [1].Andrejev O., Myrberg K., Alenius P., Lundberg P.A., 2004, Mean circulation and water exchange in the Gulf of Finland - a study based on three-dimensional modelling, Boreal Environ.R es., 9 (1), 1-16.
- [2].Burchard H., Petersen O., Rippeth T.P., 1998, Comparing the performance of the Mellor-Yamada and the k-ε two-equation turbulence models, J.Geoph ys. Res., 103 (G5), 10543-10554.
- [3].DHI Water and Environment, 2001, MIKE 3: Environmental hydraulics, DHI Software: User Guide, Documentation and Reference Manual, Copenhagen.
- [4].Erichsen A.C., Rasch P. S., 2001, Two- and three-dimensional model system predicting the water quality of tomorrow, Proc.7 th Int. Conf.: Estuarine and Coastal Modeling, ASCE, Reston.
- [5].Granéli E., 1987, Nutrient limitation of phytoplankton biomass in a brackish water bay highly influenced by river discharge, Estuar.C oast.S helf Sci., 25 (5), 555-565.
- [6].Granéli E., Wallstr¨om K., Larsson U., Granéli W., Elmgren R., 1990, Nutrient limitation of primary production in the Baltic Sea area, Ambio, 19 (3), 142 -151.
- [7].Hecky R. E., Kilham P., 1988, Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment, Limnol.Ocean ogr., 33 (4/22), 796-822.
- [8].Kahru M., Lepp¨anen J.-M., Rud O., Savchuk O.P., 2000, Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea, Mar. Ecol.Prog.S er., 207, 13-18.
- [9].Kiirikki M., Haapanm¨aki J., Koponen J., Ruuskanen A., Sarkkula J., 1998, Linking the growth of filamentous algae to the 3D-ecohydrodynamic model of the Gulf of Finland, Environ.Model. Softw., 13 (5-6), 503-509.
- [10].Kivi K., Kaitala S., Kuosa H., Kuparinen J., Leskinen E., Lignell R., Marcussen B., Tamminen T., 1993, Nutrient limitation and grazing control of Baltic plankton community during annual succession, Limnol.Ocean ogr., 38 (5), 893-905.
- [11].Kuusisto M., Koponen J., Sarkkula J., 1998, Modelled phytoplankton dynamics in the Gulf of Finland, Environ.M odel. Softw., 13 (5-6), 461-470.
- [12].Lessin G., Raudsepp U., 2006, Water quality assessment using integrated modeling and monitoring in Narva Bay, Gulf of Finland, Environ.Mo del. Assess., 11 (4), 315-332.
- [13].Lessin G., Raudsepp U., 2007, Modelling the spatial distribution of phytoplankton and inorganic nitrogen in Narva Bay, southeastern Gulf of Finland, in the biologically active period, Ecol.M odel., 201 (3-4), 348-358.
- [14].Neill M., 2005, A method to determine which nutrient is limiting for plant growth in estuarine waters at any salinity, Mar.P ollut.Bu ll., 50 (9), 945-955.
- [15].Piirsoo K., Porgasaar V., Viik M., 1992, Environmental conditions, phytoplankton and chlorophyll a in the Narva Bay (the southern part of the Gulf of Finland), Proc.Est onian Acad. Sci. Biol., 41, 149-161.
- [16].Pitkänen H., Tamminen T., 1995, Nitrogen and phosphorus as production limiting factors in the estuarine waters of the eastern Gulf of Finland, Mar.Ecol .Prog. Ser., 129, 283-294.
- [17].Rasmussen E.B. , 1993, Three-dimensional hydrodynamic models. Section 3.1 hydrodynamic models, [in:] Coastal, estuarial and harbour engineer's reference book, M.B. Abbot & N.A . Price (eds.), Chapman and Hall, London, 109-116.
- [18].Rasmussen E. B., Pietrzak J., Brandt R., 1999, A coupled ice-ocean model for the Greenland, Iceland and Norwegian seas, Deep-Sea Res.Pt . II, 46 (6-7), 1169 -1198.
- [19].Ryther J.H ., Dunstan W.M., 1971, Nitrogen, phosphorus, and eutrophication in the coastal marine environment, Science, 171, 1008-1013.
- [20].Savchuk O., 2000, Studies of the assimilation capacity and effects of nutrient load reductions in the eastern Gulf of Finland with a biogeochemical model, Boreal Environ.R es., 5 (2), 147-163.
- [21].Savchuk O., Wulff F., 1999, Modelling regional and large-scale response of Baltic Sea ecosystems to nutrient load reductions, Hydrobiologia, 393 (1), 35-43.
- [22].Seppälä J., Tamminen T., Kaitala S., 1999, Experimental evaluation of nutrient limitation of phytoplankton communities in the Gulf of Riga, J.Ma rine Syst., 23 (1-3), 107-126.
- [23].Stal L. J., Albertano P., Bergman B., von Br¨ockel K., Gallon J. R., Hayes P. K., Sivonen K., Walsby A. E., 2003, BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea - responses to a changing environment, Cont. Shelf Res., 23 (17-19), 1695-1714.
- [24].Stalnacke P., Grimwall A., Sundblad K., Tonderski A., 1999, Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970-1993, Environ.Monit. Assess., 58 (2), 173-200.
- [25].Tamminen T., Kaitala S., Kivi K., Kuparinen J., 1985, Response of a planktonic brackish water community to single and combined additions of ammonium and phosphate in a factorial mesocosm experiment, [in:] Marine biology of polar regions and effects of stress on marine organisms, J. S. Gray & M.E. Christiansen (eds.), Wiley, New-York, 363-378.
- [26].Tamminen T., Sepp¨al¨a J., 1999, Nutrient pools, transformations, ratios, and limitation in the Gulf of Riga, the Baltic Sea, during four successional stages, J.Marine Syst., 23 (1-3), 83-106.
- [27].Wasmund N., Andrushaitis A., Łysiak-Pastuszak E., M¨uller-Karulis B., Nausch G., Neumann T., Ojaveer H., Olenina I., Postel L., Witek Z., 2001, Trophic status of the south-eastern Baltic Sea: a comparison of coastal and open areas, Estuar.Coast. Shelf Sci., 53 (6), 849-864.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0003-0067