PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ventilation of the Baltic Sea deep water : A brief review of present knowledge from observations and models

Identyfikatory
Warianty tytułu
Konferencja
The 5th Baltic Sea Science Congress, Sopot, 20-24 June 2005
Języki publikacji
EN
Abstrakty
EN
The ventilation of the Baltic Sea deep water is driven by either gale-forced barotropic or baroclinic salt water inflows. During the past two decades, the frequency of large barotropic inflows (mainly in winter) has decreased and the frequency of medium-intensity baroclinic inflows (observed in summer) has increased. As a result of entrainment of ambient oxygen-rich water, summer inflows are also important for the deep water ventilation. Recent process studies of salt water plumes suggest that the entrainment rates are generally smaller than those predicted by earlier entrainment models. In addition to the entrance area, the Słupsk Sill and the Słupsk Furrow are important locations for the transformation of water masses. Passing the Słupsk Furrow, both gravity-driven dense bottom flows and sub-surface cyclonic eddies, which are eroded laterally by thermohaline intrusions, ventilate the deep water of the eastern Gotland Basin. A recent study of the energy transfer from barotropic to baroclinic wave motion using a two-dimensional shallow water model suggests that about 30% of the energy needed below the halocline for deep water mixing is explained by the breaking of internal waves. In the deep water decade-long stagnation periods with decreasing oxygen and increasing hydrogen sulphide concentrations might be caused by anomalously large freshwater inflows and anomalously high mean zonal wind speeds. In different studies the typical response time scale of average salinity was estimated to be between approximately 20 and 30 years. The review summarizes recent research results and ends with a list of open questions and recommendations.
Czasopismo
Rocznik
Strony
133--164
Opis fizyczny
bibliogr. 128 poz. wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
  • Swedish Meteorological and Hydrological Institute, Rossby Centre, Folkborgsvägen 1, SE-60176 Norrköping, Sweden, markus.meier@smhi.se
Bibliografia
  • 1. Aitsam A., Elken J., 1982, Synoptic scale variability of hydrophysical fields in the Baltic Proper on the basis of CTD measurements, [in:] Hydrodynamics of semienclosed seas, J.C. J. Nihoul (ed.), Elsevier, Amsterdam, 433-468.
  • 2. Andrejev O., Myrberg K., Alenius P., Lundberg P.A., 2004b, Mean circulation and water exchange in the Gulf of Finland - a study based on three-dimensional modeling, Boreal Environ. Res., 9 (1), 1-16.
  • 3. Andrejev O., Myrberg K., Lundberg P.A., 2004a, Age and renewal time of water masses in a semi-enclosed basin - application to the Gulf of Finland, Tellus A, 56 (5), 548-558.
  • 4. Andrejev O., Myrberg K., Mälkki P., Perttilä M., 2002, Three-dimensional modellingof the main Baltic inflow in 1993, Environ. Chem. Phys., 24 (3), 156-161.
  • 5. Arneborg A., Fiekas V., Umlauf L., Burchard H., 2006, Gravity current dynamics and entrainment - a process study based on observations in the Arkona Basin, J. Phys. Oceanogr., (submitted).
  • 6. Axell L.B., 1998, On the variability of Baltic Sea deepwater mixing, J. Geophys. Res., 103 (C10), 21667-21682.
  • 7. Beckmann A., Döscher R., 1997, A method for improved representation of dense water spreading over topography in geopotential-coordinate models, J. Phys. Oceanogr., 27 (4), 581-591.
  • 8. Blumberg A. F., Mellor G. L., 1983, Diagnostic and prognostic numerical calculation studies of the South Atlantic Bight, J. Geophys. R es., 88(C8), 4579-4592.
  • 9. Bolin B., Rodhe H., 1973, A note on the concepts of age distribution and transit time in natural reservoirs, Tellus, 25, 58-62.
  • 10. Burchard H., Bolding K., 2002, GETM - a general estuarine transport model. Scientific documentation, European Commiss., Tech. Rep. EUR 20253 EN, 157 pp.
  • 11. Burchard H., Lass H.U., Mohrholz V., Umlauf L., Sellschopp J., Fiekas V., Bolding K., Arneborg L., 2005, Dynamics of medium-intensity dense water plumes in the Arkona Basin, Western Baltic Sea, Ocean Dyn., 55 (5-6), 391-402, [doi: 10.1007/s10236-005-0025-2].
  • 12. Csanady G.T., 1982, Circulation in the coastal ocean, D. Reidel, Dordrecht, 279 pp.
  • 13. Dahlin H., Fonselius S., Sjöberg B., 1993, The changes of the hydrographic conditions in the Baltic Proper due to 1993 inflow to the Baltic Sea, ICES Statutory Meeting, Dublin, ICES C.M. 1993/C:58, 14 pp.
  • 14. Deleersnijder E., Campin J.M., Delhez E. J.M., 2001, The concept of age in marine modelling: I. Theory and preliminary results, J. Marine Syst., 28 (3-4), 229-267.
  • 15. Delhez E. J.M., Campin J.-M., Hirst A.C., Deleersnijder E., 1999, Toward a general theory of the age in ocean modelling, Ocean Model., 1 (1), 17-27.
  • 16. Döös K., Meier H. E. M., Döscher R., 2004, The Baltic haline conveyor belt or the overturningcir culation and mixing in the Baltic, Ambio, 33, 258-262.
  • 17. Döscher R., Beckmann A., 2000, Effects of a bottom boundary layer parameterization in a coarse resolution model of the North-Atlantic Ocean, J. Atmos. Ocean. Tech., 17 (5), 698-707.
  • 18. Dybern B. I., (ed.), 1994, Patchiness in the Baltic Sea, ICES Coop. Res. Rep. No 201, 126 pp.
  • 19. Elken J., 1994, Numerical study of fronts between the Baltic sub-basins, Proc. 19th Conf. Baltic Oceanogr., Sopot, Vol. 1, 438-446.
  • 20. Elken J., 1996, Deep water overflow, circulation and vertical exchange in the Baltic Proper, Est. Mar. Inst. Rep. Ser. No 6 (Tallinn), 1-91.
  • 21. Elken J., Matthäus W., 2006, Baltic Sea oceanography, [in:] BALTEX Assessment of climate change for the Baltic Sea basin (BACC). Annex A.1.1, H. von Storch (ed.), Springer, Berlin, (accepted for publication).
  • 22. Elken J., Pajuste M., Kõuts T., 1988, On intrusive lenses and their role in mixing in the Baltic deep layers, Proc. 16th Conf. Baltic Oceanogr., Kiel, 367-376.
  • 23. Elken J., Raudsepp U., Lips U., 2003, On the estuarine transport reversal in deep layers of the Gulf of Finland, J. Sea Res., 49 (4), 267-274.
  • 24. Elken J., Talpsepp L., Kõuts T., Pajuste M., 1994, The role of mesoscale eddies and saline stratification in the generation of spring bloom heterogenity in the southeastern Gotland Basin: an example from PEX _86, [in:] Patchiness in the Baltic Sea, B. I. Dybern (ed.), ICES Coop. Res. Rep. No 201, 40-48.
  • 25. Feistel R., Nausch G., Hagen E., 2003a, The Baltic inflow of autumn 2001, Meereswiss. Ber., 54, 55-68, [http://www.io-warnemuende.de/documents/mebe54 inflow01.pdf].
  • 26. Feistel R., Nausch G., Hagen E., 2006, Unusual inflow activity in 2002-2003 and varyingde ep-water properties, Oceanologia, 48 (S), 21-35, (this issue).
  • 27. Feistel R., Nausch G., Heene T., Piechura J., Hagen E., 2004a, Evidence for a warm water inflow into the Baltic Proper in summer 2003, Oceanologia, 46 (4), 581-598, [http://www.iopan.gda.pl/oceanologia/464feist.pdf].
  • 28. Feistel R., Nausch G., Matthäus W., Hagen E., 2003b, Temporal and spatial evolution of the Baltic deep water renewal in spring2003 , Oceanologia, 45 (4), 623-642, [http://www.iopan.gda.pl/oceanologia/454feis2.pdf].
  • 29. Feistel R., Nausch G., Matthäus W., Łysiak-Pastuszak E., Seifert T., Sehested Hansen I., Mohrholz V., Krüger S., Buch E., Hagen E., 2004b, Background data to the exceptionally warm inflow into the Baltic Sea in late summer of 2002, Meereswiss. Ber., 58, 1-58, [http://www.io-warnemuende.de/documents/mebe58 2004 paper.pdf].
  • 30. Feistel R., Nausch G., Mohrholz V., Łysiak-Pastuszak E., Seifert T., Matthäus W., Krüger S., Sehested Hansen I., 2003c, Warm waters of summer 2002 in the deep Baltic Proper, Oceanologia, 45 (4), 571-592, [http://www.iopan.gda.pl/oceanologia/454feis1.pdf].
  • 31. Fischer H., Matthäus W., 1996, The importance of the Drogden Sill in the Sound for major Baltic inflows, J. Marine Syst., 9 (3-4), 137-157.
  • 32. Fonselius S.H., 1969, Hydrography of the Baltic deep basins III, Fishery Board Sweden Ser. Hydrogr. Rep. No 23 (Lund), 1-97.
  • 33. Fonselius S.H., 1970, On the stagnation and recent turnover of the water in the Baltic, Tellus, 22, 533-544.
  • 34. Fonselius S., Valderrama J., 2003, One hundred years of hydrographic measurements in the Baltic Sea, J. Sea Res., 49 (4), 229-241.
  • 35. Gargett A.E., 1984, Vertical eddy diffusivity in the ocean interior, J. Mar. R es., 42, 359-393.
  • 36. Golenko N.N., Beszczyńska-Möller A., Piechura J., Walczowski W., Ameryk A., 1999, Some results of research on internal waves in the Stolpe Sill area, Oceanologia, 41 (4), 537-551.
  • 37. Gustafsson B., 1997, Interaction between Baltic Sea and North Sea, Dt. Hydrogr. Z., 49, 163-181.
  • 38. Gustafsson B.G., 2001, Quantification of water, salt, oxygen and nutrient exchange of the Baltic Sea from observations in the Arkona Basin, Cont. Shelf Res., 21 (13-14), 1485-1500.
  • 39. Gustafsson B.G., Westman P., 2002, On the causes for salinity variations in the Baltic Sea duringt he last 8500 years, Paleoceanography, 17 (3), 1040, doi: 10.1029/2000PA000572.
  • 40. Hagen E., Feistel R., 2001, Spreadingof Baltic deep water: A case study for the winter 1997-1998, Meereswiss. Ber., 45, 99-133, [http://www.io-warnemuende.de/research/mebe.html].
  • 41. Hagen E., Feistel R., 2004, Observations of low-frequency current fluctuations in deep water of the Eastern Gotland Basin/Baltic Sea, J. Geophys. Res., 109 (C03044), 1-15, [http://www.agu.org/pubs//2004/2003JC002017.shtml].
  • 42. Haidvogel D. B., Beckmann A., 1999, Numerical ocean circulation modelling, Vol. 2, Series on environmental science and management, Imperial College Press, London, U.K., 318 pp.
  • 43. Håkansson B.G., Broman B., Dahlin H., 1993, The flow of water and salt in the Sound duringt he Baltic major inflow event in January 1993, ICES Statutory Meeting, Dublin, ICES C.M. 1993/C:57, 26 pp.
  • 44. HELCOM, 2002, Environment of the Baltic Sea area, 1994-1998, Baltic Mar. Environ. Prot. Commiss., Helsinki, 82B, 215 pp.
  • 45. Huber K., Kleine E., Lass H.-U., Matthäus W., 1994, The major Baltic inflow in January 1993 - measurements and modellingr esults, Dt. Hydrogr. Z., 46, 103-114.
  • 46. Jakobsen F., 1995, The major inflow to the Baltic Sea duringJ anuary 1993, J. Marine Syst., 6 (3), 227-240.
  • 47. Jakobsen F., 1996, The dense water exchange of the Bornholm Basin in the Baltic Sea, Dt. Hydrogr. Z., 48, 133-145.
  • 48. Kõuts T., Elken J., Lips U., 1990, Late autumn intensification of deep thermohaline anomalies and formation of lenses in the Gotland Deep, Proc. 17th Conf. Baltic Oceanogr., Norrköping, 280-293.
  • 49. Kõuts T., Omstedt A., 1993, Deep water exchange in the Baltic Proper, Tellus A, 45 (4), 311-324.
  • 50. KraussW., Brügge B., 1991,Wind-produced water exchange between the deep basins of the Baltic Sea, J. Phys. Oceanogr., 21 (3), 373-384.
  • 51. Kuzmina N., Rudels B., Stipa T., Zhurbas V., 2005, The structure and driving mechanisms of the Baltic intrusions, J. Phys. Oceanogr., 35 (6), 1120-1137.
  • 52. Lass H.-U., Matthäus W., 1996, On temporal wind variations forcings alt water inflows into the Baltic Sea, Tellus A, 48 (5), 663-671.
  • 53. Lass H.-U., Mohrholz V., 2003, On dynamics and mixingof inflowings altwater in the Arkona Sea, J. Geophys. Res., 108 (C2), 3042, doi: 10.1029/2002JC001465.
  • 54. Lass H.-U., Mohrholz V., Seifert T., 2005, On pathways and residence time of saltwater plumes in the Arkona Sea, J. Geophys. Res., 110 (C11019), doi: 10.1029/2004JC002848, 2005.
  • 55. Lass H.-U., Prandke H., Liljebladh B., 2003, Dissipation in the Baltic Proper duringw inter stratification, J. Geophys. Res., 108 (C6), 3187, doi: 10.1029/2002JC001401, 2003.
  • 56. Lehmann A., 1995, A three-dimensional baroclinic eddy-resolvingm odel of the Baltic Sea, Tellus A, 47, 1013-1031.
  • 57. Lehmann A., Hinrichsen H. -H., 2000a, On the thermohaline variability of the Baltic Sea, J. Marine Syst., 25 (3-4), 333-357.
  • 58. Lehmann A., Hinrichsen H. -H., 2000b, On the wind-driven and thermohaline circulation of the Baltic Sea, Phys. Chem. Earth Pt. B, 25 (2), 183-189.
  • 59. Lehmann A., Hinrichsen H.-H., 2002, Water, heat and salt exchange between the deep basins of the Baltic Sea, Boreal Environ. Res., 7 (4), 405-415.
  • 60. Lehmann A., Krauss W., Hinrichsen H.-H., 2002, Effects of remote and local atmospheric forcingon circulation and upwellingin the Baltic Sea, Tellus A, 54 (3), 299-316.
  • 61. Lehmann A., Lorenz P., Jacob D., 2004, Modellingt he exceptional Baltic Sea inflow events in 2002-2003, Geophys. Res. Lett., 31 (21), L21308, doi: 10.1029/2004GL020830.
  • 62. Liljebladh B., Stigebrandt A., 1996, Observations of the deepwater flow into the Baltic Sea, J. Geophys. Res., 101 (C4), 8895-8911.
  • 63. Lundberg P., 1983, On the mechanics of the deep-water flow in the Bornholm Basin, Tellus A, 35 (2), 149-158.
  • 64. Mälkki P., Tamsalu R., 1985, Physical features of the Baltic Sea, Finn. Inst. Mar. Res. Ser. (Helsinki), 252, 110 pp.
  • 65. Matthäus W., Franck H., 1992, Characteristics of major Baltic inflows - a statistical analysis, Cont. Shelf Res., 12 (12), 1375-1400.
  • 66. Matthäus W., Lass H.-U., 1995, The recent salt inflow into the Baltic Sea, J. Phys. Oceanogr., 25 (2), 280-286.
  • 67. MatthäusW., Lass H.-U., Tiesel R., 1993 The major Baltic inflow in January 1993, ICES Statutory Meeting, Dublin, ICES C.M. 1993/C:51, 16 pp.
  • 68. Matthäus W., Schinke H., 1999, The influence of river runoff on deep water conditions of the Baltic Sea, Hydrobiologia, 393 (1), 1-10.
  • 69. Meier H.E.M., 1996, A regional model of the western Baltic Sea with open boundary conditions and data assimilation (in German), Ph. D. thesis, Univ. Kiel, Inst. Mar. Res. Kiel, Ber. Meereskunde, 284, 117 pp.
  • 70. Meier H.E.M., 2001, On the parameterization of mixingin three-dimensional Baltic Sea models, J. Geophys. Res., 106 (C12), 30997-31016.
  • 71. Meier H.E.M., 2005, Modelingt he age of Baltic Sea water masses: Quantification and steady state sensitivity experiments, J. Geophys. Res., 110 (C02006), doi: 10.1029/2004JC002607.
  • 72. Meier H.E.M., 2006, Baltic Sea climate in the late twenty-first century: a dynamical downscalingappr oach using two global models and two emission scenarios, Clim. Dynam., 27 (1), 39-68, doi: 10.1007/s00382-006-0124-x.
  • 73. Meier H.E.M., Broman B., Kjellström E., 2004, Simulated sea level in past and future climates of the Baltic Sea, Climate Res., 27 (1), 59-75.
  • 74. Meier H.E.M., Döscher R., Faxén T., 2003, A multiprocessor coupled ice-ocean model for the Baltic Sea: Application to salt inflow, J. Geophys. Res., 108 (C8), 3273, doi: 10.1029/2000JC000521.
  • 75. Meier H. E.M., Kauker F., 2003a, Modelingde cadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity, J. Geophys. Res., 108 (C11), 3368, doi: 10.1029/2003JC001799.
  • 76. Meier H.E.M., Kauker F., 2003b, Sensitivity of the Baltic Sea salinity to the freshwater supply, Climate Res., 24 (3), 231-242.
  • 77. Mohrholz V., Dutz J., Kraus G., 2006, The impacts of exceptionally warm summer inflow events on the environmental conditions in the Bornholm Basin, J. Marine Syst., 60, 285-301.
  • 78. Omstedt A., Elken J., Lehmann A., Piechura J., 2004, Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes, Prog. Oceanogr., 63 (1-2), 1-28.
  • 79. Omstedt A., Hanssen D., 2006, The Baltic Sea ocean system climate memory and response to changes in the water and heat balance components, Cont. Shelf Res., 26 (2), 236-251.
  • 80. Pacanowski R., Griffies S.M., 1999, Mom 3.0 manual, Tech. Rep. Geophys. Fluid Dyn. Lab., Princeton, N.J., 688 pp.
  • 81. Pedersen F. B., 1977, On dense bottom currents in the Baltic deep water, Nord. Hydrol., 8 (5), 297-316.
  • 82. Pettersson O., 1898, Methode zur volumetrischen Bestimmungder im Wasser gelösten Gase, Ber. Dt. Chem. Gesellsch., 22, 1434, 1898.
  • 83. Piechura J., Beszczyńska-Möller A., 2003, Inflow waters in the deep regions of the southern Baltic Sea - transport and transformations, Oceanologia, 45 (4), 593-621.
  • 84. Piechura J., Walczowski W., Beszczyńska-Möller A., 1997, On the structure and dynamics of the water in the Słupsk Furrow, Oceanologia, 39 (1), 35-54.
  • 85. Reißmann J.H., 2002, Integrale Eigenschaften von mesoskaligen Wirbelstrukturen in den tiefen Becken der Ostsee, Meereswiss. Ber. (Warnemünde), 52, 3-149, [http://www.io-warnemuende.de/research/mebe52 inhalt.html].
  • 86. Reißmann J.H., 2005, An algorithm to detect isolated anomalies in threedimensional stratified data fields with an application to density fields from four deep basins of the Baltic Sea, J. Geophys. Res., 110 (C12018), doi: 10.1029/2005JC002885.
  • 87. Rodhe J., 1998, The Baltic and the North Seas: a process-oriented review of the physical oceanography, [in:] The Sea, Vol. 11, A. R. Robinson & K. Brink (ed.), John Wiley & Sons, Inc, New York, 699-732.
  • 88. Rodhe J., Winsor P., 2002, On the influence of the freshwater supply on the Baltic Sea mean salinity, Tellus A, 54 (2), 175-186.
  • 89. Samuelsson M., 1996, Interannual salinity variations in the Baltic Sea duringth e period 1954-1990, Cont. Shelf Res., 16 (11), 1463-1477.
  • 90. Schinke H., MatthäusW., 1999, On the causes of major Baltic inflows - an analysis of longt ime series, Cont. Shelf Res., 18 (1), 67-97.
  • 91. Schrum C., 2001, Regionalization of climate change for the North Sea and Baltic Sea, Climate Res., 18 (1-2), 31-37.
  • 92. Schrum C., Backhaus J.O., 1999, Sensitivity of atmosphere-ocean heat exchange and heat content in the North Sea and in the Baltic Sea - a comparative assessment, Tellus A, 51, 526-549.
  • 93. Schrum C., Hübner U., Jacob D., Podzun R., 2003, A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea, Clim. Dynam., 21, 131-151.
  • 94. Sellschopp J., Arneborg L., Knoll M., Fiekas V., Gerdes F., Burchard H., Lass U.-H., Mohrholz V., Umlauf L., 2006, Direct observations of a mediumintensity inflow into the Baltic Sea, Cont. Shelf Res., (submitted).
  • 95. Sjöberg B., Stigebrandt A., 1992, Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean, Deep-Sea Res., 39, 269-292.
  • 96. Stigebrandt A., 1976, Vertical diffusion driven by internal waves in a sill fjord, J. Phys. Oceanogr., 6 (4), 486-495.
  • 97. Stigebrandt A., 1987a, Computations of the flow of dense water into the Baltic Sea from hydrographical measurements in the Arkona Basin, Tellus A, 39, 170-177.
  • 98. Stigebrandt A., 1987b, A model of the vertical circulation of the Baltic deep water, J. Phys. Oceanogr., 17 (10), 1772-1785.
  • 99. Stigebrandt A., 2003, Regulation of vertical stratification, length of stagnation periods and oxygen conditions in the deeper deepwater of the Baltic proper, Meereswiss. Ber. (Warnemünde), 54, 69-80.
  • 100. Stigebrandt A., Gustafsson B.G., 2003, Response of the Baltic Sea to climate change - theory and observations, J. Sea Res., 49 (4), 243-256.
  • 101. Stigebrandt A., Lass H.U., Liljebladh B., Alenius P., Piechura J., Hietala R., Beszczyńska-Möller A., 2002, DIAMIX - an experimental study of diapycnal eepwater mixingin the virtually tideless Baltic Sea, Boreal Environ. Res., 7 (4), 363-369.
  • 102. Stips A., Bolding K., Burchard H., Djavidnia S., Peneva E., 2005, Realistic multiannual simulations of the coupled North Sea and Baltic Sea system using the GETM model, European Commiss., Tech. Rep. EUR 21503 EN, 81 pp.
  • 103. Svensson A., 2005, Observations of baroclinic eddies in the Baltic Sea, Earth Sci. Centre, Depart. Oceanogr., Göteborg Univ., Rep., ISSN 1400-3821 B472, 40 pp.
  • 104. van Aken H.M., 1986, The onset of stratification in shelf seas due to differential advection in the presence of a salinity gradient, Cont. Shelf Res., 5 (4), 475-485.
  • 105. Voipio A., 1981, The Baltic Sea, Elsevier, Amsterdam, 418 pp.
  • 106. Walin G., 1981, On the deep water flow into the Baltic, Geophysica, 17, 75-93.
  • 107. Willebrand J., Barnier B., Böning C., Dieterich C., Killworth P. D., LeProvost C., Jia Y., Molines J.-M., New A.-L., 2001, Circulation characteristics in three eddy-permittingm odels of the North Atlantic, Prog. Oceanogr., 48 (2-3), 123 -161, 2001.
  • 108. Winsor P., Rodhe J., Omstedt A., 2001, Baltic Sea ocean climate: an analysis of 100 yr of hydrographic data with focus on the freshwater budget, Climate Res., 18 (1-2), 5-15.
  • 109. Winsor P., Rodhe J., Omstedt A., 2003, Erratum: Baltic Sea ocean climate: an analysis of 100 yr of hydrographical data with focus on the freshwater budget, Climate Res., 25 (2), 183-183.
  • 110. Zhurbas V.M., Oh I. S., Park T., 2006, Formation and decay of a longshore baroclinic jet associated with transient coastal upwellingan d downwelling: A numerical study with applications to the Baltic Sea, J. Geophys. Res., 111 (C4), C04014, doi: 10.1029/2005JC003079.
  • 111. Zhurbas V.M., Oh I. S., Paka V.T., 2003, Generation of cyclonic eddies in the Eastern Gotland Basin of the Baltic Sea followingden se water inflows: numerical experiments, J. Marine Syst., 38 (3-4), 323-336.
  • 112. Zhurbas V.M., Paka V.T., 1997, Mesoscale thermohaline variability in the Eastern Gotland Basin followingt he 1993 major Baltic inflow, J. Geophys. Res., 102 (C9), 20917-20926.
  • 113. Zhurbas V.M., Paka V.T., 1999, What drives thermohaline intrusions in the Baltic Sea, J. Marine Syst., 21 (1-4), 229-241.
  • 114. Zhurbas V.M., Stipa T., Mälkki P., Paka V., Golenko N., Hense I., Sklyarov V., 2004, Generation of subsurface cyclonic eddies in the southeast Baltic Sea: observations and numerical experiments J. Geophys. Res., 109 (C05033), doi: 10.1029/2003JC002074.
  • 115. Zorita E., Laine A., 2000, Dependence of salinity and oxygen concentrations in the Baltic Sea on large-scale atmospheric circulation, Climate Res., 14 (1), 25-41.
  • 116. Arneborg L., Fiekas V., Burchard H.: Mixing and dynamics of a gravity plume - observations, theory, and modeling (Oral)
  • 117. • Burchard H., Lass H.U., Mohrholz V., Umlauf L., Sellschopp J., Fiekas V., Bolding K., Arneborg L.: Dynamics of medium-intensity dense water plumes in the Arkona Basin (Oral)
  • 118. Feistel R., Nausch G., Hagen E.: Unusual inflow activity 2002/2003 and varying deep-water properties (Oral)
  • 119. Fiekas V., Arneborg L., Prandke H., Sellschopp J., Knoll M.: Finestructure and mixing during a salt water inflow into the wintry Arkona Sea (Oral)
  • 120. Kuzmina N., Rudels B., Stipa T., Zhurbas V.: The structure and driving mechanisms of the Baltic intrusions (Poster)
  • 121. Meier H.E.M., Döscher R., Broman B., Piechura J.: The major Baltic inflow in January 2003 and preconditioning by smaller inflows in summer/autumn 2002: a model study (Oral)
  • 122. Mohrholz V.: On the contribution of small inflow events to the ventilation of the subhalocline layers of the Baltic (Poster)
  • 123. Mohrholz V., Schuffenhauer I.: Climatological aspects of the exceptional Baltic summer inflows 2002/2003 (Poster)
  • 124. Nohr C., Gustafsson B.G.: Wind-driven diapycnical mixing in the Baltic Sea deep-water (Oral)
  • 125. Paka V.T., Golenko N. N.: Features of water exchange in vicinity of the Słupsk Sill and adjoining areas - field experiment (Oral)
  • 126. Sellschopp J., Fiekas V., Knoll M., Gerdes F., Arneborg L., Lass U., Mohrholz V., Burchard H., Umlauf L.: Repeated observations during an inflow event into the Arkona Sea (Oral)
  • 127. Stips A., Feistel R., Bolding K., Burchard H.: Can we trace salt water inflows into the Gotland Deep with the 3D hydrodynamical model GETM? (Oral)
  • 128. Zhurbas V., Stipa T., Paka V. T., Golenko N.N.: Observations and numerical modeling of subsurface cyclonic eddies in the Baltic Sea (Oral)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0003-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.