PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Nanostrukturalne materiały wybuchowe : otrzymywanie i właściwości

Identyfikatory
Warianty tytułu
EN
Nanostructured explosives : preparation and properties
Języki publikacji
PL
Abstrakty
EN
Nanostructured energetic materials (nanoems) are compositions of a fuel and an oxidizer that are homogenous at a nanometric scale. They are prepared in three basic forms: (i) as thin multilayered foils consisting of alternating layers of oxidizer and fuel, (ii) mixtures of fuel and oxidizer nanoparticles, and (iii) mixtures obtai-ned via sol-gel synthesis. Thin foils are nanoscaled only in one dimension. in such composites, there are large, regular planar interfaces between fuel and oxidizer layers which thickness is below 100 nm. The composites are characterized by a very close physical contact of reactants and a lack of impurities between them as they are usually obtained by vacuum deposition of the components. The second kind of nanoems are mixtures prepared by powder mixing of nanometer sized particles of oxidizer and fuel. components are previously produced via chemical or physical processing and then mixed in an appropriate solvent. being consisted of the same components as conventional thermites (metal powders - usually al, and metal oxides - usually Fe2O3), this nanocomposites are known as "superthermites". In contrast to the conventional thermites, supertermites are very sensitive to ignition and they may burn at a velocity of 1 km/s or even more. Synthesis of nanoems using sol-gel chemistry is a solution phase synthetic route. Its benefits include the convenience of low-temperature preparation using general and inexpensive laboratory equipment. The nanoparticles of both oxidizer and fuel precipitate from a colloidal solution (sol). This means that nanocomposites are formed by simultaneous condensation and/or crystallization of dissolved molecular precursors, i.e. by growth of particles and not by their size reduction. The obtained gels (organic and/or inorganic substances) are dried either by controlled evaporation of solvent, by freeze-drying or by supercritical extraction. The size of the particles (homogeneity of the composition) can be varied by changing synthesis and drying conditions. keywords: energetic materials, nanostructures, sol-gel synthesis.
Rocznik
Strony
189--229
Opis fizyczny
bibliogr. 49 poz., tab., wykr.
Twórcy
autor
autor
  • Instytut Chemii, Wydział Nowych Technologii i Chemii, Wojskowa Akademia Techniczna, ul. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] U. Teipel, ed., Energetic Materials . Particle Processing and characterization, Wiley-VCH, Weinheim, Germany, 2005, p. 238.
  • [2] B. Vogelsanger, B. Berger, Energetic Materials . Performance and Safety, Proceedings of the 36th International Annual conference of ICT, Karlsruhe, Germany, 2005, pp. 1.15.
  • [3] A. Pivkina, P. Ulyanova, Y. Frolov, S. Zavyalov and J. Schoonman, Propellants, Explos. Pyrotech., 2004, 29, 39.
  • [4] W.J. Dalton, N. Sommerdijk, Sol-Gel Materials: Chemistry and Application, Gordon and Breach Science Publisher, Amsterdam, 2001.
  • [5] A. Gash, J. Satcher, R. Simpson, B. Clapsaddle, Nanostructured energetic materials with sol-gel chemistry, Materials Research Society Fall Meeting, Boston, MA, USA, 2003.
  • [6] G.A. Fox, T.F. Baumann, L.J. Hope-Weeks, A.L. Vance, Chemistry and processing of nanostructured materials, Lawrence Livermore National Laboratory, USA, Report UCRL-ID-146820, 2002.
  • [7] K.B. Plantier, M.L. Pantoya, A.E. Gash, Combust. Flame, 2005, 140, 299.
  • [8] A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss, and T.P. Weihsa, J. Appl. Phys., 2000, 87, 1255.
  • [9] K.J. Blobaum, M.E. Reiss, J. M. Plitzko Lawrance, T.P. Weihs, J. Appl. Phys., 2003, 94, 2915.
  • [10] L. Menon, S. Patibandla, K. Bhargava Ram, S. I. Shkuratov, D. Aurongzeb, J. Yun, M. Holtz, J. Berg, H. Temkin, Appl. Phys. Lett., 2004, 84, 4735.
  • [11] G. Powell, M. Place, C. Leach, R. James, and J. Hall, Developments in Vapor Deposited Pyrotechnic Materials, 28th Int. Annual Conference of ICT, Karlsruhe, Germany, June 24.27, 1997.
  • [12] S.J. Graham, G.A. Leiper, Ch.A. Bishop, UK Patent Application GB 2 269 380 A, 1994.
  • [13] C.E. Aumann, A.S. Murray, G.L. Skofronick, and J.A. Martin, Metastable Interstitial Composites: Super Termite Powders, Insensitive Munitions Technology Symposium, Williamsbuer, VA, 6.9 June 1994.
  • [14] S.F. Son, Performance and Characterization of Nanoenergetic Materials at Los Alamos, Mat. Res. Soc. Symp. Proc., 2004, 800, 161.
  • [15] B.W. Asay, S.F. Son, J.R. Busse, and D.M. Oschwald, Propellants, Explos. Pyrotech., 2004, 29, 216.
  • [16] A. Prakash, A.V. McCormik, M.R. Zachariah, Adv. Mater., 2005, 17, 900.
  • [17] U. Teipel, ed., Energetic Materials, Particle Processing and Characterization, Wiley-VCH, Weinheim, 2005, p. 251.
  • [18] A. Prakash, A.V. McCormick, M.R. Zachariah, Nano Lett., 2005, 5, 1357.
  • [19] Y.S. Zhen, K. Hrdina, US Patent 5,240,493, 1993.
  • [20] E.T. Ong, V. Sendijarevic, US Patent 5,698,483, 1997.
  • [21] H.J.M. Gruenbauer, US Patent 5,998,523 A, 1999.
  • [22] H.J.M. Gruenbauer, US Patent 6,527,825 B1, 2003.
  • [23] W.L. Perry, B.L. Smith, Ch.J. Bulian, J.R. Busse, C.S. Macomber, R.C. Dye, and S.F. Son, Propellants, Explos. Pyrotech. 2004, 29, 99.
  • [24] C.C. Koch, Nano-Structured Mater., 1997, 9, 13.
  • [25] M. Schoenitz, E.L. Dreizin, Consolidated energetic nanocomposites: mechanical and reactive properties, Proceedings of the 36th International Annual conference of ICT, Karlsruhe, Germany, 2005, p. 133.
  • [26] M. Schoenitz, T.S. Ward, E.L. Dreizin, Fully dense nano-composite energetic powders prepared by arrested reactive milling, Proceedings of the Combustion Institute, 2005, 30, 2071.
  • [27] S. Subramanian, S. Hasan, S. Bhattacharya, Y. Gao, S. Apperson, M. Hossain, R.V. Shende, S. Gangopadhyay, P. Render, D. Kapoor, S. Nicolich, Self-Assembled Nanoenergetic Composite, Mater. Res. Soc. Symp. Proc., 2006, 896, 9.
  • [28] S. Valliappan, J. Swiatkiewicz, J.P. Puszynski, Powder Technology, 2005, 156, 164.
  • [29] B.W. Asay, S.F. Son, J.R. Busse, D.M. Oswald, Propellants, Explos. Pyrotech., 2004, 29, 216.
  • [30] J.J. Granier, M.L. Pantoya, Combust. Flame, 2004, 138, 373.
  • [31] M.L. Pantoya, J.J. Granier, Propellants, Explos. Pyrotech., 2005, 30, 53.
  • [32] R.L. Simpson, T.M. Tillotson, L.W. Hrubesh, US Patent 6,986,819 B2, 2006.
  • [33] R.L. Simpson, R.S. Lee, T.M. Tillston, L.W. Hrubesh, R.W. Swansiger, G.A. Fox, US Patent,666,935 B1, 2003.
  • [34] T.M. Tillotson, A.E. Gash, R.L. Simpson, L.W. Hrubesh, J.H. Satcher, Jr., J.F. Poco, J. Non-Cryst. Solids, 2001, 285, 338.
  • [35] A.E. Gash, T.M. Tillotson, J.H. Satcher, Jr., J.F. Poco, L.W. Hrubesh, and R.L. Simpson, Chem. Mater., 2001, 13, 999.
  • [36] A.E. Gash, J.H. Satcher, Jr., R.L. Simpson, Chem. Mater., 2003, 15, 3268.
  • [37] B.J. Clapsaddle, A. E. Gash, J.H. Satcher Jr., R.L. Simpson, J. Non-Cryst. Solids, 2003, 331, 190.
  • [38] L. Zhao, B.J. Clapsaddle, J.H. Satcher, Jr., D.W. Schaefer, and K.J. Shea, Chem. Mater., 2005, 17, 1358.
  • [39] R.W. Pekala, J. Mater. Sci., 1989, 24, 3221.
  • [40] R.W. Pekala, US Patent 4,997,804, 1991.
  • [41] R.W. Pekala, US Patent 5,556,892, 1996.
  • [42] R.W. Pekala, US Patent 5,086,085, 1992.
  • [43] F.V. Mikulec, J.D. Kirtland, M.J. Sailor, Adv. Mater., 2002, 14, 38.
  • [44] D. Kovalev, V.Y. Timoshenko, N. Kunzner, Phys. Rev. Lett., 2001, 87, 068301.
  • [45] C.N.R. Rao, A. Muller, A. K. Cheetham, The chemistry of nanomaterials. Synthesis, properties and applications, Wiley-VCH, Weinheim, Germany, 2004, p. 539.
  • [46] M. Riad Manaa, A.R. Mitchell, R.G. Garza, P.F. Pagoria, and B.E. Watkins, J. Am. Chem. Soc., 2005, 127, 13786.
  • [47] A.L. Ramaswamy, P. J. Kaste, A. Miziolek, B. Homan, S. Trevino, and M.A. O.Keefe, Weaponization and Characterization of Nanoenergetics, Defence Applications of Nanomaterials, 2003.
  • [48] P.J. Kaste, A.L. Ramaswamy, M. O.Keefe, Ultra-high resolution imaging of energetic material modifiers, Lawrence Berkeley National Laboratory, LBNL-52384, 2003.
  • [49] S.H. Kim, M.R. Zachariah, Adv. Mater., 2004, 16, 821.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0002-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.