PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody otrzymywania nienaturalnych aminoacylo-tRNA

Identyfikatory
Warianty tytułu
EN
Methods of preparation non-natural minoacyl-tRNA
Języki publikacji
PL
Abstrakty
EN
Despite an enormous progress in the development of biophysical methods to establish protein structure and function, there is still a lack of precise ways of detection and mapping the specific fragments of molecules, in terms of their structure and properties. This is due to the fact that only a few amino acids show specific properties - like fluorescence of tryptophan - which enable analysis of the interaction and formation mechanism of protein - nucleic acids complexes. These problems one can easily overcome using proteins containing non-natural amino acid. However, all methods used in in vitro protein synthesis require up till now aminoacyl-tRNA as a substrate. Hence, the acylation of tRNA is a key and limiting step of every method. In the present article, we show all known non-enzymatical methods of tRNA acylation. One of them is based on ribozymes obtained by in vitro evolution (SELEX). These ribozymes that transfer amino acid bound to its 5'-end to 3'-end of tRNA can specifically recognize amino acid or tRNA. Other attempts aimed at chemical synthesis of aminoacyl-nucleotides, which were further ligated to appropriately prepared tRNA. As an amino acid donor, the peptidylnucleic acid (PNA) was used as well. An alternative method is an acylation under high hydrostatic pressure which allows to attach any amino acid to tRNA in a one-step procedure. All mentioned methods can be used in protein translation in vitro. For in vivo synthesis of protein containing non-natural amino acid, orthogonal pairs of tRNA-AARS are used. In orthogonal pairs mutated aminoacyl-tRNA synthetase recognizes specific amino acid and acylates suppressor amber tRNA.
Rocznik
Strony
61--77
Opis fizyczny
bibliogr. 37 poz., tab., wykr.
Twórcy
autor
  • Instytut Chemii Bioorganicznej, Polska Akademia Nauk, ul. Noskowskiego 12/14, 61-704 Poznań
Bibliografia
  • [1] F.H.C. Crick, L. Barnett, S. Brenner, R.J. Watts-Tobin, Nature, 1961, 192, 1227.
  • [2] A.J. Link, M.L. Mock, D.A. Tirrell, Curr. Opin. Biotech., 2003, 14, 603.
  • [3] T. Hohsaka, M. Sisido, Curr. Opin. Chem. Biol., 2002, 6, 809.
  • [4] D.A. Dougherty, Curr. Opin. Chem. Biol., 2000, 4, 645.
  • [5] T.L. Hendrickson, V. Crecy-Legard, P. Schimmel, Annu. Rev. Biochem., 2004, 73, 147.
  • [6] Y. Kiso, H. Matsumoto, S. Mizumoto, T. Kimura, Y. Fujiwara, K. Akaji, Biopolymers, 1999, 51, 59.
  • [7] D.B. Cowie, G.N. Cohen, Biochim. Biophys. Acta., 1957, 26, 252.
  • [8] D.R.W. Hodgson, J.M. Sanderson, Chem. Soc. Rev., 2004, 33, 422.
  • [9] K. Kruger, P.J. Grabowski, A.J. Zaug, D.E. Gottschling, T.R. Cech, Cell, 1982, 31, 147
  • [10] C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, S. Altman, Cell, 1983, 35, 849.
  • [11] N. Ban, P. Nissen, J. Hansen, P.B. Moore, T.A. Steitz, Science, 2000, 11, 905.
  • [12] P.A. Loshe, J.W. Szostak, Nature, 1996, 381, 442.
  • [13] H. Saito, H. Suga, J. Am. Chem. Soc., 2001, 123, 7178.
  • [14] N. Lee, Y. Bessho, K. Wei, J.W. Szostak, H. Suga, Nature, 2000, 7, 28.
  • [15] Y. Bessho, D.R.W. Hodgson, H. Suga, Nat. Biotechnol., 2002, 20, 723.
  • [16] D.N. Frank, N.R. Pace. Annu Rev Biochem., 1998, 67, 153.
  • [17] H. Saito, D. Kourouklis, H. Suga, EMBO J., 2001, 20, 1797.
  • [18] H. Murakami, N.J. Bonzagni, H. Suga, J. Am. Chem. Soc., 2002, 124, 6834.
  • [19] T.G. Heckler, L. Chang, Y. Zama, T. Naka, S.M. Hecht, Biochemistry, 1984, 23, 1468.
  • [20] S.M. Hecht, B.L. Alford, Y. Kuroda, S. Kitano, J. Biol. Chem., 1978, 253, 4517.
  • [21] Ch.J. Noren, S.J. Anthony-Cahill, M.C. Griffith, P.G. Schultz, Science, 1989, 244, 182.
  • [22] T.G. Heckler, Y. Zama, T. Naka, S.M. Hecht, J. Biol. Chem., 1982, 258, 4492.
  • [23] G. Baldini, B. Martgolio, J. Brunner, Biochemistry, 1988, 27, 97951.
  • [24] S.A. Robertson, Ch. J. Noren, S. Anthony-Cahill, M.C. Griffith, P.G. Schultz, Nucleic Acids Res., 1989, 17, 9649.
  • [25] K Ninomiya, T Kurita, T Hohsaka, M Sisido, Chem. Comm., 2003, 52, 2242.
  • [26] N. Hashimoto, K. Ninomiya, T. Endo, M. Sisido, Chem. Commun., 2005, 43, 4321.
  • [27] K. Ninomiya, T. Minohata, M. Nishimura, M. Sisido, J. Am. Chem. Soc., 2004, 126, 15984.
  • [28] D.R. Corey, LIPS, 2003, 10, 347.
  • [29] D. Kiga. K. Sakamoto, K. Kodama, T. Kigawa, Proc. Natl. Acad. Sci. USA, 2002, 99, 9715.
  • [30] D. R Liu, T.J. Magliery, M. Pastrnak, P.G. Schultz, Proc. Natl. Acad. Sci. USA, 1997, 94, 10092.
  • [31] D. Zhang, V. Nagarajan, W.A. Goddard, J.F. Danzer, D. Debe, Proc. Natl. Acad. Sci. USA, 2002, 99, 6579.
  • [32] L. Wang, P.G. Schultz, Chem. Biol., 2001, 8, 883.
  • [33] A. Krzy¿aniak, J. Barciszewski, Int. Biol. Macromol., 1994, 16, 153.
  • [34] M. Giel-Pietraszuk, J. Barciszewski, FEBS J., 2006, 273, 3014.
  • [35] A. Krzyżaniak, J. Jurczak, S. Porowski, J. Barciszewski, Rev. High Pressure Sci. Technol., 1998, 7, 1303.
  • [36] A. Krzyżaniak, J. Jurczak, Z. Maćkiewicz, G. Kupryszewski, S. Porowski, J. Barciszewski, High Pressure Research in the Biosciences and Biotechnology, Ed. K. Heremans, Leuven, University Press, 1997, 527.
  • [37] S.J. Anthony-Cahill, M.C. Griffith, C.J. Noren, D.J. Suich, P.G. Schultz, Trends Biochem. Sci., 1989, 13, 400.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0002-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.