PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ozone synthesis-mechanism and technology

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An operational principle of discharge elements applied in ozonizers- chemical plasma reactors for silent discharge generation has been discussed. An analysis of phenomena occurring in ozone synthesis reactors has been presented and on that basis requirements to be met in order to obtain the highest efficiency of an ozone synthesis process have been formulated. The principal quantitative factors that characterize an ozone generation process are the following: energy consumption, concentration of the obtained ozone, and material efficiency of the process. The effect of the applied dielectric material, reaction zone volume, and the design of electrodes on the process efficiency has been experimentally tested. Along with the testing, an analysis of the ozone synthesis kinetics in the conditions that resemble the operation of an industrial installation has been done. The course of the synthesis of nitrogen oxides in an ozonizer fed with air and in the conditions of a big power load has also been analyzed. Dependences of the concentration of individual nitrogen oxides on the specific energy in a discharge zone have been obtained. From among a number of factors responsible for high energy consumption during the ozone synthesis process it is an irreversible change of part of electrical energy into heat and an unproductive heating up of a substrate gas in a discharge gap that are the most important ones. The following factors can have advantageous effect on the reduction of energy losses: a discharge gap of a smaller size, an adequate type of the applied electrode, and the kind of gas introduced to the reactor (air or oxygen).
Rocznik
Strony
19--24
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Technical University of Lublin
autor
  • Technical University of Lublin
autor
  • Technical University of Lublin
Bibliografia
  • (1) Bes R.S., Benas J.M., Coste C., Louboutin R., Optima! ozone production from air, Ozone Science & Engineering, 17 (1995), 259 - 266.
  • (2) Eliasson B., Kogelschatz U., Nonequilibrium volume plasma chemical processing, IEEE Trans. Plasma Sci, 19, (1991), 1063 - 1076.
  • (3) Filippov J. V., Voblikova V.A., Panteleiey V.I., Elektrosintez ozona. Izd. Moskovskogo Universiteta 1987, Moskva.
  • (4) Kogelschatz U., Eliasson B., Ozone generation and applications, in: Handbook of Electrostatic Processes, ed. By J.S. Chang, A.J. Kelly,. J.M., Crowley, Marcel Dekker, Inc, (1995), 581 - 605.
  • (5) Siemens W., Pogg. Ann. der Chemie 107 (1957), Ozonizer, 66.
  • (6) Kogelschatz U., Eliasson B., Hirth M., Ozone generation from oxygen and air: Discharge Physics and Reaction Mechanisms. Ozone Science & Engineering, 10 (1988), 367 - 378.
  • (7) Kogoma M., Okazaki S., Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure, J. Phys. D: Appl. Phys. 27 (1994), 1985 - 1987.
  • (8) Peyrous R., Pignolet P., Held B., Kinetic simulation of gaseous species created by an electrical discharge in dry or humid oxygen, J. Phys. D: Appl. Phys., 22 (1989), 1658 - 1667.
  • (9) Pollo I., Wroński M., Ozonek J., Wolińska J.: Dielectric thickness and rate of ozone production, Polish Journal of Applied Chemistry, 39 (1995), 503 - 510.
  • (10) Samoilovich V.G., Gibalov V.I., Kozlov K.V, Fiziceskaja chimia bariernogo razriada. Izd. Mosk. Univ., Moskva 1989.
  • (11) Okazaki S., Kogoma M., Inomata T., A comparison of the ozone formation efficiency of the usual silent discharge type ozonizer and that of a new type ozonizer with fine mesh electrodes, Proc. of 12th Ozone World Congress, Lille, (1995), 41 - 49.
  • (12) Okazaki S., Kogoma M., Uchiyama H., Cost reduction by the use of Ar gas mixture in an atmospheric pressure glow plasma, as compared with the silent electric discharge in an ozonizer, Proc 3nd Int. Symp. on High Pressure, Low Temp. Plasma Chem., Strasbourg 1991, 101 - 106.
  • (13) Okazaki S., Kogoma M., Uehara M., Kimura Y., A comparison of the ozone formation efficiency of atmospheric pressure glow discharge and that of silent electric discharge, 4th Int. Symp. High Pressure, Low Temp. Plasma Chem., Bratislava 1993, 1 - 6.
  • (14) Okazaki S., Kogoma M., Uehara M., Kimura Y, Development of atmospheric pressure glow discharge in oxygen an in air and its application to ozone generation. Proc. of 13th Ozone World Congress, Kyoto 1997, 859 - 864.
  • (15) Okazaki S., Kogoma M., Uehara M., Kimura Y., Development of atmospheric pressure glow discharge in oxygen an in air and its application to ozone generation. Proc. of 11th Ozone World Congress, San Francisco 1993, S-8-39-46.
  • (16) Okazaki S., Uchiyama H., Pollo I., Ozonek J., Investigation into carbon containing multilayer electrodes for ozonizers, Proc. of 13-th Ozone World Congress, Kyoto, (1997), 841 - 846.
  • (17) Pollo I., Ozonek J., Mass balance of ozone synthesis taking account of dispersion. Proc. Konf. Nauk. „Inżynieria Chemiczna -współczesne kierunki badawcze w aspektach praktycznych", Kraków 1994, 85 - 91.
  • (18) Pollo I., Thin-layer dielectrics for ozonizers, Ozone Synthesis and Properties, Prace Naukowe Politechniki Lubelskiej, Lublin 1993, 25 - 31.
  • (19) Yamabe C, Horii K., Development of a new type ozonizer, in: Memoirs of the Faculty of Engineering, Nagoya University, Vol. 41, No 2, 127 - 208.
  • (20) Braun D., Kuchler U., Pietsch G., Behaviour of NOx in air-fed ozonizers, Pure and Appl. Chem., 60 (1988), 741 - 746.
  • (21) Pietsch G.J., Gas discharge in ozone generators, Proc. of Regional Conferene on Ozone Generation and Application to Water and Waste Water Treatment, Moscow, 1998, 13 - 28.
  • (22) Yagi, S. and Tanaka, M., Mechanism of ozone generation in air-fed ozonizers. J.Phys. D: Appl. Phys. 12 (1979) 1509 - 1520.
  • (23) Gibalov V.I., Samoilovitch V.G., Wroński M., Electrosynthesis of nitrogen oxides and ozone in ozonizer. Proc. of 7th International Symposium on Plasma Chemistry, Eindhoyen (Netherlands), 1985, 401 - 406.
  • (24) Wroński M., Wolińska L, Pollo L, Influence of high voltage electrode construction on ozone generation and electrical characteristics of ozonizers, 7th Int. Symp. High Pressure, Low Temp. Plasma Chem., Cork, Ireland 1998, 215 - 220.
  • (25) Wroński, M., Samiolovitch, V.G., Pollo I., Synthesis of NOx during ozone production from the air. Proc. of the Int. Ozone Symp. „Application of ozone in water and wastewater treatment", Warsaw, 1994, 263 - 272.
  • (26) Wroński M., Pollo L., Ozone and nitrogen oxides reaction in silent discharges, Proc. of 13th Ozone World Congress, Kyoto 1997, 181 - 184.
  • (27) Samoilovich, V.G., Gibalov, V.I. Wroński, M., The mechanism of nitrogen oxides and ozone electrosynthesis in ozonizer. Proc. XVII Int. Conf. on Phenomena in Ionizes Gases, Budapest 1985, 325 - 326.
  • (28) Schmidt-Szałowski K., Borucka A., Catalytic activity of silica in ozone formation in electrical discharges, Plasma Chem. Plasma Proces. 10 (1990), 443.
  • (29) Schmidt-Szałowski K., Catalytic properties of silica packing under ozone synthesis conditions, Ozone Science and Engineering, 18 (1996), 41 - 55.
  • (30) Opalińska T., Ozone formation in an electric discharge at ferroelectric surfaee, Acta Phys. Slov., 39 (1989), 83 - 88.
  • (31) Wroński M., Pollo L, Ozone formation depending on different cooling water temperatures, Polish Journal Applied Chemistry. 42 (1998), 119 - 124.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS3-0020-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.