PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling of end milling process by generalized regression networks

Identyfikatory
Warianty tytułu
Konferencja
Automatyzacja produkcji. Nauka - Wiedza - Innowacje. Tom. I. Referaty plenarne i sesje. Wrocław, 11-12 grudnia 2003
Języki publikacji
EN
Abstrakty
EN
Supervised neural network algorithms are developed for use as a direct modelling method, to predict forces for ball-end milling operation. The training of the networks is performed with experimental machining data This paper uses the regression neural networks approach to evolve an efficient model for estimation of cutting forces, based on a set of input cutting conditions. The predictive capability of using analytical and neural network approaches are compared using statistics, which showed that neural network predictions for three cutting force components were for 4% closer to the experimental measurements, compared to 11% using analytical method. Exhaustive experimentation is conduced to develop the model and to validate it. The milling experiments prove that this model can predict accurately the cutting forces in three Cartesian directions.
Twórcy
autor
autor
autor
  • University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS3-0011-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.