PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New materials for solid oxide fuel cells: state of art and perspectives

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
Modelling and elaboration of renewable energy sources and energy storage systems. September, 14, 2004, Wrocław, Poland
Języki publikacji
EN
Abstrakty
EN
Electrochemical fuel cells are considered as serious alternative power source to the conventional energy systems. Many efforts have been achieved during last decade in the technology of solid oxide fuel cells (SOFC) - the most advanced type of fuel cells. Improvements of SOFC still necessary prior commercialisation require development or modification of materials used as electrolyte, electrodes, interconnect and sealant in the electrochemical cell. The paper presents recent progress on this field and discuss the possible alternatives for the chemicals used at present in the prototype SOFC plants. Requirements for the certain SOFC element materials are specified from the point of view: decreasing the operation temperature, compatibility of different materials and catalytic properties for the direct hydrocarbon fuel reforming. Recent literature data are supplemented by the results of author's thermochemical studies on the SOFC materials.
Słowa kluczowe
Twórcy
autor
  • Faculty of Chemistry, Wrocław University of Technology, Wyb. St. Wyspiańskiego 27, 50 370 Wrocław, Poland
Bibliografia
  • [1] ORMEROD R.M., Solid oxide fuel cells, Chem. Soc. Rev., Vol. 32 (2003), pp. 17-28.
  • [2] WINKLER W. , LORENZ H. , The design of stationary and mobile solid oxide fuel cell-gas turbine systems, J. Power Sources, Vol. 105 (2002), pp. 222-227.
  • [3] MINH N. Q., Ceramic fuel cells, J. Am. Ceram. Soc., Vol. 76 (1993), No 3, pp. 563-588.
  • [4] SINGHAL S.C., Solid oxide fuel cells for stationary, mobile, and military applications, Solid State Ionics, Vol. 152-153 (2003), pp. 405-410.
  • [5] XIA C. , LANG Y. , MENG G., Recent advances to the development of low-temperature solid oxide fuel cells, Fuel Cells, , Vol. 4 (2004), No 1-2, pp 41-47.
  • [6] YOKOKAWA H., SAKAI N, HORITA T., YAMAJI K., Recent developments in solid oxide fuel cell materials, Fuel Cells, Vol. 1 (2001), No 2, pp 117-131.
  • [7] YOKOKAWA H., Understanding materials compatibility, Annu. Rev. Mater. Res., Vol. 33 (2003), pp 581-610.
  • [8] BRANDON N.P., SKINNER S., STEELE B.C.H., Recent advances in materials for fuel cells, Annu. Rev. Mater. Res., Vol. 33 (2003), pp 183-213.
  • [9] ZHU B., YANG X.T., XU J., ZHU Z.G., Ji S.J., SUN M.T., SUN J.C., Innovative low temperature SOFCs and advanced materials, J. Power Sources, Vol. 118 (2003), pp. 47-53.
  • [10] HAILE S.M., Fuel cell materials and components, Acta Materialia, Vol. 51 (2003), pp. 5981-6000.
  • [11] TIEIZ F., BUCHKREMER H.-P., STOEVER D, Components manufacturing for solid oxide fuel cells, Solid State Ionics, Vol. 152/153 (2002), pp. 373-381.
  • [12] WEBER A., IVERS-TIFFEE E, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, J. Power Sources, Vol. 127 (2004), pp. 273-283.
  • [13] IVERS-TIFFEE E., WEBER A., HERBSTRITT D., Materials and technologies for SOFC-components, J. Eur. Ceram. Soc., Vol. 21 (2001), pp. 1805-1811.
  • [14] WEN T.-L., WANG D., CHEN M., TU H., LU Z., ZHANG Z., NIE H., HUANG W., Material research for planar SOFC stack, Solid State Ionics, Vol. 148 (2002), pp. 513-519.
  • [15] STEELE B.C.H., Materials science and engineering: The enabling technology for the commercialisation of fuel cell systems, J. Mater. Sci., Vol. 36 (2001), pp. 1053-1068.
  • [16] RALPH J.M., SCHOELER A.C., KRUMPELT M., Materials for lower temperature solid oxide fuel cells, J. Mater. Sci., Vol. 36 (2001), pp. 1161-1172.
  • [17] BOLVIN J.C., MAIRESSE G., Recent material developments in fast oxide ion conductors, Chem. Mater., Vol. 10 (1998), pp. 2870-2888.
  • [18] MOGENSEN M., JENSEN K.V., JOERGENSEN M.J., PRIMDAHL S., Progress in understanding SOFC electrodes, Solid State Ionics, Vol. 150 (2002), pp. 123-129.
  • [19] SETTER N., WASER R., Electroceramic materials, Acta Materialia, Vol. 48 (2000), pp. 151-178.
  • [20] ZHU B., New generation or universal fuel cell system? R&D for intermediate temperature solid oxide fuel cells (ITSOFCs), J. New Mat. Electrochem. Systems, Vol. 4 (2001), pp. 239-251.
  • [21] ISHIHARA T., MATSUDA H., TAKITA Y., Doped LaGa03 perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc., Vol. 116 (1994), pp. 3801-3803.
  • [22] MATRASZEK A., KOBERTZ D., SINGHEISER L., HILPERT K., KUNCEWICZ-KUPCZYK W., MILLER M., Thermodynamic studies of perovskites on the basis of LaGa03 and implications for SOFC, Proc. of Seventh Intemational Symposium on Solid Oxide Fuel cells (SOFC VII), June 3-8, 2001, Tsukuba, Japan, The Electrochemical Society, Proc. Vol. 2001-16, H. Yokokawa and S.C.Singhal, eds., pp. 319-328.
  • [23] KUNCEWICZ-KUPCZYK W., KOBERTZ D., MILLER M., SINGHEISER L., HILPERT K., Vaporization of Sr - and Mg - doped lanthanum gallate and implications for solid oxide fuel cells, J. Electrochem. Soc., Vol. 148 (2001), pp. E276-E281.
  • [24] KUNCEWICZ-KUPCZYK W., MILLER M., MATRASZEK A., HILPERT K., Badanie równowag fazowych w układzie MgO-SrO-Ga203-La203, Polska metalurgia w latach 1998-2002, Vol. I, Wydawnictwo Naukowe "Akapit", Kraków, 2002, pp. 45-51.
  • [25] MATRASZEK A., KOBERTZ D., SINGHEISER L., HILPERT K., KUNCEWICZ-KUPCZYK W., MILLER M., SCHULZ O, MARTIN M., Thermodynamic and cation diffusion studies of perovskites on the basis of LaGa03 and implications for SOFC, Materialwissenschaft und Werkstofftechnik, Vol. 33 (2002), pp. 355-362.
  • [26] KUNCEWICZ-KUPCZYK W., KOBERTZ D., MILLER M., CHATILLON C., SINGHEISER L., HILPERT K., Vaporization studies of the Ga203La203 system, J. Amer. Ceram. Soc., Vol. 85 (2002), pp. 2299-2305.
  • [27] MATRASZEK A., SINGHEISER L., KOBERTZ D., HILPERT K., MILLER M., MARTIN M., Thermodynamic investigations of Sr- and Mg-doped lanthanum gallate by Knudsen effusion mass spectrometry and defect chemical analysis, Phys.Chem.-Chem.Phys., Vol. 5 (2003), pp. 3042-3052.
  • [28] MATRASZEK A., SINGHEISER L., KOBERTZ D., HILPERT K., MILLER M., SCHULZ O., MARTIN M., Phase diagram study in the La203-Ga203-MgO-SrO system in air , Solid State Ionics, Vol. 166 (2004), pp. 343-350.
  • [29] DRENCKHAN W., LEZUO A., REITER K, Technische und wirtschaftliche Aspekte des Brennstoffzelleneinsatzes in Kraft-Waerme-KopplungsanIagen, VGB Kraftwerkstechnik, Vol. 71 (1991), No 4, pp. 332-335.
  • [30] MATRASZEK A., MILLER M., SINGHEISER L., HILPERT K., Thermodynamic vaporization studies of the manganese oxide — yttria stabilized zirconia (YSZ) solid solution, J. Eur. Ceram. Soc., Vol. 24 (2004), pp. 2649-2656.
  • [31] GOODENOUGH J.B., Oxide-ion electrolytes, Annu. Rev. Mater. Res., Vol. 33 (2003), pp. 91-128.
  • [32] KHARTON V.V., FIGUEIREDO F.M., NAVARRO L., NAUMOVICH E.N., KOVALEVSKY A.V., YAREMCHENKO A.A., VISKUP A.P., CARNEIRO A., MARQUES F.M.B., FRADE J.R., Ceria-based materials for solid oxide fuel cells, J. Mater. Sci., Vol. 36 (2001), pp. 1105-1117.
  • [33] POLINI R., PAMIO A., TRAVERSA E, Effect of synthetic route on sintering behaviour, phase purity and conductivity of Sr- and Mg-doped LaGa03 perovskites, J. Eur. Ceram. Soc., Vol. 24 (2004), pp. 1365-1370.
  • [34] MATRASZEK A., MILLER M., SINGHEISER L., HILPERT K., Phase composition and vaporization study of LaGa1-xAlxO3(s), 0 = < x = < 1, and La0.9Sr0.1Ga08-xAlxMg0.2O2.85, x = 0.1, 0.2, 0.3, J. Amer. Ceram Soc., Vol. 86 (2003), pp. 1911 - 1917.
  • [35] ZHA S., CHENG J., LIU Y., LIU X., MENG G., Electrical properties of pure and Sr-doped Bi2Al409 ceramics, Solid State Ionics, Vol. 156 (2003), pp. 197-200.
  • [36] KATO H., KUDO T., NAITO H., YUGAMI H., Electrical conductivity of Al-doped La1-xSrxSc03 perovskite-type oxides as electrolyte materials for low-temperature SOFC, Solid State Ionics, Vol. 159 (2003), pp. 217-222.
  • [37] JAYARAMAN V., MAGREZ A., CALDES M., JOUBERT O., GANNE M., PIFFARD Y., BROHAN L. , Characterization of perovskite systems derived from Ba2In2O5 Part I: the oxygen-deficient Ba2In2(1-x)Ti2xO5+x 1-x (0 ≤ x ≤ 1) compounds, Solid state Ionics, Vol. 170 (2004), pp. 17-24.
  • [38] KAKINUMA K., TAKAHASHI N., YAMAMURA H., NOMURA K., ATAKE T., Electrical conductivity and local distortion of (Ba0.5La0.5)2In2O5.5 doped with divalent or tetravalent cation in insite, Solid State Ionics, Vol. 168 (2004), pp. 69-74.
  • [39] KREUER K.D., Proton-conducting oxides, Annu. Rev. Mater. Res., Vol. 33 (2003), pp. 333-359.
  • [40] SHIMADA T., WEN C., TANIGUCHI N., OTOMO J., TAKAHASHI H., The high temperature proton conductor BaZr0.4Ce0.4In0.2O3-a, J. Power Sources, Vol. 131 (2004), pp. 289-292.
  • [41] JIANG S.P., CHAN S.H., A review of anode materials development in solid oxide fuel cells, J. Mater. Sci., Vol. 39 (2004), pp. 4405-4439.
  • [42] ZHU W.Z., DEEVI S.C., A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. Eng., Vol. A 362 (2003), pp. 228-239.
  • [43] HUANG X., LIU Z., LU Z., PEI L., ZHU R., LIU Y., MIAO J., ZHANG Z., SU W., A Ni/YSZ composite containing Ce0.9Ca0.1O2-δ particles as an anode SOFCs, J. Phys. Chem. Solids, Vol. 64, (2003), pp. 2379-2384.
  • [44] SKARMOUTSOS D., NIKOLOPOULOS P., TIETZ F., VINKE l.C., Physical characterization of Y0.25Zr0.60Ti0.15O2-x and its performance as a Ni/Y0.25Zr0.60TI0.15O2-x anode cermet in an SOFC, Solid State Ionics, Vol. 170 (2004), pp. 153-158.
  • [45] TAO S. , IRVINE J.T.S., Optimization of mixed conducting properties of Y2O3-ZrO2-TiO2 and SC2O3-Y2O3-ZrO2-TiO2 solid solutions as potential SOFC anode materials, J Solid State Chem., Vol. 165 (2002), pp. 12-18.
  • [46] TAO S., IRVINE J.T.S., Investigation of the mixed conducting oxide ScYZT as a potential SOFC anode material, J. Electrochem. Soc., Vol. 151 (2004), No 4, pp. A497-A503.
  • [47] TAO S., IRVINE J.T.S., Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ a redox-stable. efficient perovskite anode for SOFCs, J. Electrochem Soc., Vol. 151 (2004), No 2, pp. A252-A259.
  • [48] HIRABAYASHI D., TOMITA A., BRITO M.E., HIBINO T., HARADA U., NAGAO M., SANO M., Solid oxide fuel cells operating without using an anode material, Solid State Ionics, Vol. 168 (2004), pp. 23-29.
  • [49] FUJITA K., HASHIMOTO T., OGASAWARA K., KAMEDA H., MATSUZAKI Y., SAKURAI T., Relationship between electrochemical properties of SOFC cathode and composition of oxide layer formed on metallic interconnects, J. Power Sources, Vol. 131 (2004), pp. 270-277.
  • [50] GAUDON M., LABERTY-ROBERT C., ANSART F., DESSEMOND L., STEVENS P., Evaluation of sol-gel process for the synthesis of La1-xSrxMnO3+δ cothodic multilayers for solid oxide fuel cells, J. Power Sources, Vol. 133 (2004), pp. 214-222.
  • [51] SKINNER S.J., Recent advances in perovskite-type materials for solid oxide fuel cell cathodes, Int. J. Inorg. Mater., Vol. 3 (2001), pp. 113-121.
  • [52] RALPH J.M., ROSSIGNOL C., KUMAR R., Cathode materials for reduced-temperatures SOFCs, J. Electrochem. Soc., Vol. 150 (2003), No 11, pp. A1518-A1522.
  • [53] BASU R.N., TIETZ F., TELLER O., WESSEL E., BUCHKREMER H.P., STOEVER D., LaNi0.6Fe0.4O3 as a cathode contact material for solid oxide fuel cells, J. Solid State Electrochem., (2003), No 7, pp. 416-420.
  • [54] CHEN W., WEN T., NIE H., ZHENG R., Study of Ln0.6Sr0.4Co0.8Mn0.2O3-δ (Ln = La, Gd, Sm or Nd) as the cathode materials for intermediate temperature SOFC, Mater. Res. Bull., Vol. 38 (2004), pp. 1319-1328.
  • [55] ZHAO H., HUO L, GAO S., Electrochemical properties of LSM-CBO composite cathode, J. Power Sources, Vol. 125 (2004), pp. 149-154.
  • [56] FUKUI T., OHARA S., MAITO M., NOGI K., Morphology control of the electrode for solid oxide fuel cells by using nanoparticles, J. Nanoparticles Research, Vol. 3 (2001), pp. 171-174.
  • [57] ZHU W.Z., DEEVI S.C., Development of interconnect materials for solid oxide fuel cells, Mater. Sci. Eng., Vol. A348 (2003), pp. 227-243.
  • [58] FERGUS J. W. , Lanthanum chromite-based materials for solid oxide fuel cell interconnects, Solid State Ionics, Vol. 171 (2004), pp. 1-15.
  • [59] MURATA K., NISHIMURA N., DOI N., Development of ceramic gas separator for SOFCs, J. Electrochem. Soc., Vol. 150 (2003), No 7, pp. A873-A877.
  • [60] BRYLEWSKI T., NANKO M., MARUYAMA T., PRZYBYLSKI K., Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell, Solid State Ionics, Vol. 143 (2001), pp. 131-150.
  • [61] YANG Z., WEIL K.S., PAXTON D.M., STEVENSON J.W., Selection and evaluation of heat-resistant alloys for SOFC interconnect applications, J. Electrochem. Soc., Vol. 150 (2003), No 9, pp. A1188-A1201.
  • [62] DAS D., MILLER M., NICKEL H., HILPERT K., Chromium evaporation from SOFC interconnector alloys and degradation process by chromium transport, Proc. 1st European Solid Oxide Fuel Cell Forum, Luzern, Switzerland, Ulf Bossel, Baden, Switzerland, 1994, pp. 703-713.
  • [63] WEIß R., PECK D.H., MILLER M., HILPERT K., Volatility of chromium from interconnect material, Proc. 17th RISO Int. Symposium on Materials Science: High Temperature Electrochemistry: Ceramics and Metals, Roskilde, Denmark, ed. F.W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen i B. Zachau-Christiansen, RISO National Laboratory, 1996, pp. 479-484.
  • [64] HILPERT K., DAS D., MILLER M., PECK D.H., WEIß R., Chromium vapour species over SOFC interconnect materials and their potential for degradation processes, J. Electrochem. Soc., Vol. 143 (1996), pp. 3642-3647.
  • [65] URBANEK J., MILLER M., HILPERT K., SCHMIDT H., Reduction of the chromium vaporization from the metallic interconnect by perovskite coatings, Proc. 2nd European Solid Oxide Fuel Cell Forum, 6-10 May 1996, Oslo, Norway, ed. Ulf Bossel, Baden, Switzerland, 1996, pp. 503-512.
  • [66] SOHN S.-B., CHOI S.-Y., Suitable glass-ceramic sealant for planar solid-oxide fuel cells, J. Am. Ceram. Soc., Vol. 87 (2004), No 2, pp. 254-260.
  • [67] BAHADUR D., LAHL N., SINGH K., SINGHEISER L., HILPERT K., Influence of nucleating agents on the chemical interaction of MgO-Al2O3-SiO2-B2O3 glass sealants with components of SOFCs, J. Electrochem. Soc., Vol. 151 (2004), No 4, pp. A558-A562.
  • [68] SIMMER S.P., STEVENSON J.W., Compressive mica seals for SOFC applications, J. Power Sources, Vol. 102 (2001), pp. 310-316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS3-0005-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.