PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Process-Specific Information for Learning Electronic Negotiation Outcomes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce Process-Specific Feature Selection, an innovative procedure of feature selection for textual data. The procedure applies to data gathered in person-to-person communication. The procedure relies on the knowledge of the processes that govern such communication. It is general enough to represent data in a wide variety of domains. We present a case study of electronic negotiation, in which participants exchange text messages. We present the empirical results of classifying the outcomes of electronic negotiations based on such texts. The results achieved using process-specific feature selection are marginally better than those afforded by several traditional feature selection methods. We show that this tendency is consistent across several learning paradigms.
Rocznik
Strony
351--373
Opis fizyczny
bibliogr. 46 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Allen, D. E., Guy, R. F.: Conversation Analysis: The Sociology of Talk, Mouton, The Hague, 1974.
  • [2] Argyle, M., Furnham, A., Graham, J.: Social situations, Cambridge: Cambridge University Press, 1981.
  • [3] Burns, B. D., Danyluk, A. P.: Feature Selection vs Theory Reformulation: A Study of Genetic Refinement of Knowledge-based Neural Networks, Machine Learning, 38(1-2), 2000, 89-107.
  • [4] Cellich, C., Jain, S. C.: Global Business Negotiations : A Practical Guide, Thomson, South-Western, 2004.
  • [5] Cherkassky, V., Muller, F.: Learning from Data, Wiley, 1998.
  • [6] Chu-Carroll, J., Carberry, S.: Conflict Resolution in Collaborative Planning Dialogues, International Journal of Human Computer Studies, 53(6), 2000, 969-1015.
  • [7] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods, Cambridge University Press, 2000.
  • [8] Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent Semantic Kernels, Proc Eighteenth International Conference on Machine Learning (ICML'2001),Morgan Kaufmann, 2001.
  • [9] Duda, R., Hart, P., Stork, D.: Pattern Classification, second edition, JohnWiley and Sons, 2001.
  • [10] Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text Classification, Journal of Machine Learning Research, 3, 2003, 1289-1305.
  • [11] Forman, G.: Feature Selection: We've barely scratched the surface, IEEE Intelligent Systems, 20(6), 2005, 74-76.
  • [12] Francis,W. N., Kucera, H.: Brown CorpusManual, 1979, Http://helmer.aksis.uib.no/icame/brown/bcm.html.
  • [13] Gabrilovich, E., Markovitch, S.: Text Categorization with Many Redundant Features: Using Aggressive Feature Selection to Make SVMs Competitive with C4.5, Proc of the 21st International Conference on Machine Learning, 2004.
  • [14] Gabrilovich, E., Markovitch, S.: Feature Generation for Text Categorization Using World Knowledge, Proceedings of the 19th International Joint Conference on Artificial Intelligence, 2005.
  • [15] Guyon, I., Elisseeff, A.: An introduction to variable and feature selection, Special issue on variable and feature selection, Journal of Machine Learning Research, 3(Mar.), 2003, 1157-1182.
  • [16] Hargie, O., Dickson, D.: Skilled Interpersonal Communication: Research, Theory and Practice, Fourth edition, Routledge, 2004.
  • [17] Herring, S. C.: Computer-mediated discourse, in: Handbook of discourse analysis (D. Tannen, D. Schiffin, H. Hamilton, Eds.), Oxford, Blackwell, 2001, 612-634.
  • [18] ispell, 2001, Http://www.gnu.org/directory/text/wordproc/ispell.html.
  • [19] Jarmasz, M., Szpakowicz, S.: Roget's Thesaurus and semantic similarity, in: Current Issues in Linguistic Theory. Recent Advances in Natural Language Processing III: Selected Papers from RANLP 2003 (N. Nicolov, K. Bontcheva, G. Angelova, R. Mitkov, Eds.), vol. 206, John Benjamins, Amsterdam/Philadelphia, 2004, 111-120.
  • [20] Kersten, G. E.: Modeling Distribution and Integrative Negotiations. Review and Revised Characterization, Group Decision and Negotiation, 10(6), 2000, 493-514.
  • [21] Kersten, G. E., Noronha, S. J.: WWW-based Negotiation Support: Design, Implementation, and Use, Decision Support Systems, 25, 1999, 135-154.
  • [22] Kersten, G. E., Zhang, G.: Mining Inspire Data for the Determinants of Successful Internet Negotiations, Central European Journal of Operational Research, 11(3), 2003, 297-316.
  • [23] Li, C., Giampapa, J. A., , Sycara, K.: Bilateral Negotiation Decisions with Uncertain Dynamic Outside Options, Proc The 1st IEEE International Workshop on Electronic Contracting, 2004.
  • [24] Liu, H., L.Yu: Toward Integrating Feature Selection Algorithms for Classification and Clustering, IEEE Transactions on Knowledge and Data Engineering, 17(4), 2005, 491-502.
  • [25] Liu, H., Motoda, H., Yu, L.: A selective sampling approach to active feature selection, Artificial Intelligence, 159, 2004, 49-74.
  • [26] Manning, C. D., Schutze, H.: Foundations of Statistical Natural Language Processing, Fourth edition, The MIT Press, 1999.
  • [27] Marchand,M., Shah,M.: PAC-Bayes Learning of Conjunctions and Classification of Gene-Expression Data, Advances in Neural Information Processing Systems 17: Proceedings of NIPS 2004, 2005.
  • [28] Marriot, H. E.: Intercultural Business Negotiation, in: The Discourse of Negotiation (A. Firth, Ed.), Pergamon, 1995, 247-268.
  • [29] Murakoshi, H., Shimaru, A., Ochimizu, K.: Construction of Deliberation Structure in Email Communication, Computational Intelligence, 16(4), 2000, 570-577.
  • [30] Perloff, R. M.: The Dynamics of Persuasion, Second edition, Lawrence Erlbaum Associates, 2003.
  • [31] Putnam, L., Roloff, M.: Communication Perspective on Negotiation, in: Communication and Negotiation (L. Putnam, M. Roloff, Eds.), London: Sage, 1992, 1-20.
  • [32] Quinlan, J. R.: C4.5: Programs forMachine Learning, MorganKaufmann Publishers, SanMateo, California, 1993.
  • [33] Rich, E., Knight, K.: Artificial Intelligence, McGraw-Hill, NY, 1991.
  • [34] Rojot, J.: Negotiation: from theory to practice, Macmillan Academic and Professional, 1991.
  • [35] Schoop, M.: A Language-Action Approach to Electronic Negotiations, Systems, Signs and Action, 1(1), 2006, 62-79.
  • [36] Sebastiani, F.: Machine Learning in Automated Text Categorization, ACM Computing Surveys, 34(1), 2002, 1-47.
  • [37] Shah, M., Sokolova, M., Szpakowicz, S.: The Role of Domain-Specific Knowledge in Classifying the Language of E-negotiations, Proc. 3rd International Conference on Natural Language Processing (ICON 2004), 2004.
  • [38] Sokolova, M., Marchand, M., Japkowicz, N., Shawe-Taylor, J.: The Decision List Machine, Advances in Neural Information Processing Systems, 15, The MIT Press, 2003.
  • [39] Sokolova,M., Nastase, V., Szpakowicz, S., Shah, M.: Analysis and Models of Language in Electronic Negotiations, in: Issues in Intelligent Systems. Models and Techniques (M. Draminski, P. Grzegorzewski, K. Trojanowski, S. Zadrozny, Eds.), EXIT, 2005, 197-211.
  • [40] Sokolova,M., Shah,M., Szpakowicz, S.: Comparative Analysis of Text Data in Successful Face-to-Face and Electronic Negotiations, Group Decision and Negotiations, 15(2), 2006, 127-140.
  • [41] Sokolova, M., Szpakowicz, S.: Analysis and Classification of Strategies in Electronic Negotiations, Proc 18th Conference of the Canadian Society for Computational Studies of Intelligence, 2005.
  • [42] Stracuzzi, D. J., Utgoff, P. E.: Randomized Variable Elimination, Journal of Machine Learning Research, 5, 2004, 1331-1362.
  • [43] Summers, D.: (ed) Longman Dictionary of Contemporary English, Fourth edition, Pearson Education: Longman, 2003.
  • [44] Thompson, L., Nadler, J.: Negotiating Via Information Technology: Theory and Application, Journal of Social Issues, 58(1), 2002, 109-124.
  • [45] Witten, I., Frank, E.: Data Mining, Morgan Kaufmann, 2005, Http://www.cs.waikato.ac.nz/ml/weka/.
  • [46] Zeleznikow, J.: Risk, negotiation and argumentation - a decision support system based approach, Law, Probability and Risk, 1, 2002, 37-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0015-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.