PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wykorzystanie mikroorganizmów i roślin do pozyskiwania metali

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The use of microorganisms and plants in metal extracting
Języki publikacji
PL
Abstrakty
EN
Technologies using living organisms for extracting metals from mine wastes, ore concentrates and poor quality ores have been developed since the early 1980s. Of these technologies, the most popular is biomining that uses the natural ability of microorganisms to leach metals. Microorganisms oxidize sulfur and iron in sulfide ores, thus contributing to the conversion of insoluble metal sulfides to soluble sulfates, which enables to recover pure metals from extracts. By degrading the mineral (rock) matrix, microorganisms make extraction of precious metals with traditional techniques easier and more effective. Phytominig is based on the tendency of some plant species to bioaccumulate excessive amounts of metals from their hostrock. The plants, called hyperaccumulators are grown on highly mineralized soils or post-mine lands and their yield (bio-ore) is used as a pure metal source. Compared to the biomining, this technology is not so popular primarily because of the longevity of this process and its unprofitability. This report describes bio- and phytomining technologies, the most important species and their ecological demands, as well as biochemical processes that are associated with bio- and phytomining. The advantages and disadvantages of these technologies, and their potential for future applications are summarized in the last chapter.
Rocznik
Strony
858--862
Opis fizyczny
bibliogr. 28 poz., tab., wykr.
Twórcy
autor
  • Zakład Geochemii i Ochrony Środowiska, Akademia Świętokrzyska w Kielcach, ul Chęcińska 5, 25-020 Kielce, aggie@pu.kielce.pl
Bibliografia
  • 1. ANDERSON C.W.N., BROOKS R.R., CHIARUCCI A., LACOSTE C.J., LEBLANC M., ROBINSON B.H., SIMCOCK R. & STEWARD R.B. 1999 - Phytomining for thallium, nickel and gold. J. Geochem. Explor., 67: 407-415.
  • 2. BRIERLEY J.A 1999 - Biooxidation Pretreatment of Refractory Sulfidic and Sulfidic-Carbonaceous Gold Ores and Concentrates. [W:] L.H. Filipek & G.S. Plumlee (eds.). The Environmental Geochemistry of Mineral Deposits, Part B. Case Studies and Research Topics. Soc. of Econ. Geologists. Rev. inEcon. Geology, 6B: 539-547.
  • 3. BRIERLEY J.A. & BRIERLEY C.L. 2001 - Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 59: 233-239.
  • 4. BUCZKOWSKI R., KONDZIELSKI I. & SZYMAŃSKI T. 2002 - Metody remediacji gleb zanieczyszczonych metalami ciężkimi. Wyd. UMK. Toruń.
  • 5. CATHLES L.M. & APPS J.A. 1975 - A model of the dump leaching process that incorporates oxygen balance, heat balance, and air convection. Metallurgical Transactions B, 6B: 617-624.
  • 6. DEVECI H., AKCIL A. & ALP I. 2004 - Bioleaching of complex zinc sulfides using mesophilic and thermophilic bacteria: a comparative importance of pH and iron. Hydrometallurgy, 73: 293-303.
  • 7. DUNN C.E., ERDMAN J.A., HALL G. & SMITH S.C. 1992 - Biogeochemical Exploration Simplified. Notes for a short course on methods of biogeochemical and geobotanical prospecting - with emphasis on arid terrains: 1-187 (niepubl.).
  • 8. EHRLICH H.L. 2001 - Past, present and future of biohydrometallurgy. Hydrometallurgy, 59: 127-134.
  • 9. HALLBERG K.B., SEHLIN H.M. & LINDSTRÔM E.B. 1996 - Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite. Appl. Microbiol. Biotechnol., 45: 212-216.
  • 10. HANSFORD G.S. & BAILEY A.D. 1992 - The logistic equation for modeling bacterial oxidation kinetics. Minerals Engineering, 5: 1355-1364.
  • 11. HUTCHINS S.R., BRIERLEY J.A. & BRIERLEY C.L. 1988 - Microbal pretreatment of refractory sulfide and carbonaceous ores improves the economics of gold recovery. Mining Engineering, 40(4): 249-254.
  • 12. KOMNITSAS C. & POOLEY F.D. 1990 - Bacterial oxidation of an arsenical gold sulphide concentrate from Olympias, Greece. Minerals Engineering, 3(3/4): 295-306.
  • 13. KOMNITSAS C. & POOLEY F.D. 1991 - Optimization of the bacterial oxidation of an arsenical gold sulphide concentrate from Olympias, Greece. Minerals Engineering, 4(12): 1297-1303.
  • 14. LINDSTRÔM E.B. & GUNNERIUSSON L. 1990 - Thermophilic bioleaching of arsenopyrite using Sulfolubus and a semicontinuous laboratory procedure. J. Industr. Microbiol., 5: 375-382.
  • 15. MIGASZEWSKI Z. M. & GAŁUSZKA A. 1998 - Zastosowanie roślin w prospekcji geologicznej oraz w pracach rekultywacyjnych. Prz. Geol., 46 (7): 594-599.
  • 16. MIGASZEWSKI Z.M. & GAŁUSZKA A. 1999 - Smokersy - tajemnice głębin oceanów. Prz. Geol., 47 (2): 175-180.
  • 17. MIGASZEWSKI Z.M. & GAŁUSZKA A. 2003 - Zarys geochemii środowiska. Wyd. Akad. Swięt. w Kielcach.
  • 18. NASERNEJAD B., KAGHAZCHI T., EDRISI M. & SOHRABI M. 1999 - Bioleaching of molybdenum from low-grade copper ore. Process Biochemistry, 35: 437-440.
  • 19. NEDELKOSKA T.V. & DORAN P.M. 2000 - Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering, 13(5): 549-561.
  • 20. NORDSTROM D.K. & ALPERS C.N. 1999 - Geochemistry of Acid Mine Waters. [W:] G.S. Plumlee & J.J. Logsdon (eds.) - The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. of Econ. Geologists. Rev. in Econ. Geology, 6A: 133-160.
  • 21. OLSON G.J., BRIERLEY J.A. & BRIERLEY C.L. 2003 - Bioleaching review part B: Progress in bioleaching: application of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol., 63: 249-257.
  • 22. PINCHES A. 1975 - Bacterial leaching of an arsenic-bearing sulphide concentrate. [W:] A.R. Burkin (ed.) - Leaching and Reduction in Hydrometallurgy. The Institute of Mining and Metallurgy. London: 28-35.
  • 23. RAWLINGS D.E. 1998 - Industrial practice and the biology of leaching of metals from ores. The 1997 Pan Labs Lecture. J. Industrial Microbiol. & Biotechn., 20: 268-274.
  • 24. RAWLINGS D.E., DEW D. & DU PLESIS C. 2003 - Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology, 21: 38-44.
  • 25. ROBINSON B.H., BROOKS R.R., HOWES A.W., KIRKMAN J.H. & GREGG P.E.H. 1997a - The potential of the high-biomass Berkheya coddii for phytoremediation and phytomining. J. Geochem. Explor., 60: 115-126.
  • 26. ROBINSON B.H., CHIARUCCI A., BROOKS R.R., PETIT D., KIRKMAN J.H., GREGG P.E.H. & DE DOMIMINCIS V. 1997b - The nickel hyperaccumulator plant Alyssum bertolonii as a potential agentfor phytoremediation and phytomining of nickel. J. Geochem. Explor., 59: 75-86.
  • 27. SADOWSKI Z., JAZDZYK E. & KARAS H. 2003 - Bioleaching of copper ore flotation concentrates. Mineral Engineering, 16: 51-53.
  • 28. SCHIPPERS A. & SAND W. 1999 - Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol., 65: 319-321.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0015-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.