PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spaleniowa synteza materiałów nanostrukturalnych

Autorzy
Identyfikatory
Warianty tytułu
EN
Combustion synthesis of nanomaterials
Języki publikacji
PL
Abstrakty
EN
Combustion synthesis or self-propagating high-temperature synthesis (SHS) is a well established method for preparation of many valuable compounds such as: refractory compounds (borides, carbides, nitrides, silicides), oxides (tanthalates, niobates, ferrites, cuprates), intermetallics (aluminides, germanides, nickelides) chalcogenides (sulphides, selenides, tellurides), phosphides, hydrides, and some others. The applications of these compounds can be classified as: cutting tools and polishing powders, resistive heating elements, shape-memory alloys, electrodes, coatings and thin films. Some SHS technologies have found their industrial applications. In Russia, USA and Japan, the SHS powders of inorganic compounds, ceramic insulators, high temperature heaters, shape memory alloy wire, cutting inserts, etc, are produced on an industrial scale. However, it was thought that only large particles (several microns and above) could be obtained by the SHS method [1-3]. It was found recently (Nersisyan et al., 2003-2005), that if the reaction occurs in a medium of molten salt (basically alkali metal halide) and has moderate exothermicity, nanometric size titanium carbide and some of transition metals (Ti, Ta, Nb, Mo) could be obtained by utilization of SHS method. Moreover Huczko at al. (2005) reported that silicon carbide single-crystals in the form of nanofibers and spherical multi-walled carbon nanoparticles and encapsulates could be prepared through the defluorination of poly(tetrafluoroethene) with silicon-containing precursors using the combustion synthesis route. Finally, in 2005, Koch published complete results of a thermodynamic analysis of self-sustaining reaction of fluorinated graphite with magnesium, and reported on detection of single walled carbon nanotubes and carbon nano carpet rolls in the combustion products. This discovery of great importance was patented as a new method of synthesis of carbon allotropes (fullerenes, carbon nanotubes) and various carbon encapsulates. Undoubtedly, it has been demonstrated that SHS offers great potential for generating nanomaterials, including 1D inorganic and carbon nonostructures. In this review, we discuss the recent developments in the field of combustion synthesis, with special emphasis on the preparation of nanomaterials by low-temperature combustion synthesis (LCS), reductive dehalogenation of halocarbons, and sol-gel combustion synthesis (SCS).
Rocznik
Strony
793--817
Opis fizyczny
fot., wykr., bibliogr. 42 poz.
Twórcy
autor
autor
  • Instytut Chemii, Wydział Nowych Technologii i Chemii Wojskowa Akademia Techniczna, ul. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] A. Varma, A.S. Rogachev, A.S. Mukasyan, S. Hwang, Adv. Chem. Eng., 1998, 24, 78.
  • [2] R. Pampuch, Siedem wykładów o ceramice, Wyd. AGH, Kraków 2001.
  • [3] P. Mossino, Ceram. Int., 2004, 30, 311.
  • [4] H. Chen,Y. Cao, X. Xiang, J. Li, Ch. Ge, J. Alloys Compd., 2001, 325, L1.
  • [5] A. Huczko, H. Lange, G. Chojecki, S. Cudziło, Y. Qiu Zhu, H.W. Kroto, D.R.M.Walton, J. Phys. Chem. B, 2003, 107, 2519.
  • [6] A. Huczko, M. Bystrzejewski, H. Lange, A. Fabianowska, S. Cudziło, A. Panas, M. Szala, J. Phys. Chem. B, 2005, 109, 16244.
  • [7] H.H. Nersisyan, J.H. Lee, C.W. Won, J. Mater. Res., 2002, 17, 2859.
  • [8] H.H. Nersisyan, J.H. Lee, C.W. Won, Mater. Res. Bull., 2003, 38, 1135.
  • [9] H.H. Nersisyan, J.H. Lee, C.W.Won, Int. J. SHS, 2003, 12, 149.
  • [10] H.H. Nersisyan, J.H. Lee, S.I. Lee, C.W. Won, Combust. Flame, 2003, 135, 539.
  • [11] H.H. Nersisyan, J.H. Lee, C.W. Won, Mater. Chem. Phys., 2005, 89, 283.
  • [12] H.H. Nersisyan, J.H. Lee, C.W. Won, Combust. Flame, 2005, 142, 241.
  • [13] X. Feng, Y-J.Bai, B. Lu. Ch-G. Wang, Y-X. Liu, G-L. Geng, L. Li, J. Cryst. Growth, 2004, 264, 316.
  • [14] X. Feng, L-Y. Shi, Mater. Chem. Phys., 2005, 94, 58.
  • [15] H. Nersisyan, H.Won, C.Won, J. Lee, Mater. Chem. Phys., 2005, 94, 153.
  • [16] A. Khanra, L. Pathak, S. Mishra, M. Godkhindi, Mater. Lett., 2004, 58, 733.
  • [17] D. Radey, M. Marinov, V. Tumbalev, I. Radev, L. Konstantinov, Physica C, 2005, 418, 53.
  • [18] E. Koch, Propellants, Explos. Pyrotech., 2005, 30, 209.
  • [19] E. Koch, Patent Niemiecki DE 101 22 750 A1, 2002.
  • [20] V. Sousa, A. Segadaes, M. Morelli, R. Kiminami, Int. J. Inorg. Mater., 1999, 1, 235.
  • [21] J. Zhou, Y. Wang, F. Zhao, Y. Wang, Y. Zhang, L. Yang, J. Lumin., 2003, 119.120, 248.
  • [22] K. Nagaveni, G. Sivalingam, M. Hedge, G. Madras, Appl. Catal. B. Environ., 2004, 48, 83.
  • [23] J. Jiu, Y. Ge, X. Li, L. Nie, Mater. Lett., 2002, 54, 260.
  • [24] W. Yang, Y. Qi, Y. Ma, X. Li, X. Guo, J. Gao, M. Chen, Mater. Chem. Phys., 2004, 84, 52.
  • [25] R. Purohit, S. Saha, A. Tyagi, J. Nucl. Mater., 2001, 288, 7.
  • [26] R. Purohit, B. Sharma, K. Pillai, A. Tyagi, Mater. Res. Bull., 2001, 36, 2711.
  • [27] T. Mokkelbost, I. Kaus, T. Grande, M. Einarsrud, Chem. Mater., 2004, 16, 5489.
  • [28] W. Chen, F. Li, J. Yu, Mater. Lett., 2006, 60, 57.
  • [29] Y. Fu, Ch. Li, J. Alloys Compd., 2003, 354, 232.
  • [30] W. Shan, Zhaochi, Z. Li, J. Zhang,W. Shen, C. Li, J. Catalysis, 2004, 228, 206.
  • [31] S. Anthonysamy, K. Ananthasivan, V. Chandramouli, I. Kaliappan, P. Rao, J. Nucl. Mater., 2000, 278, 346.
  • [32] S. Yan,W. ling, E. Zhou, J. Cryst. Growth, 2004, 273, 226.
  • [33] X. Pingbo, Z.Weiping, Y. Kuo, J. Long, Z.Weiwei, X. Shangda, J. Alloys Compd., 2000, 311, 90.
  • [34] C. Yan, Z. Xu, F. Cheng, Z.Wang, L. Sun, C.Liao, J. Jia, Solid State Comm., 1999, 111, 287.
  • [35] J. Huang, H. Zhuang, W. Li, Mater. Res. Bull., 2004, 38, 149.
  • [36] Y. Ji, D. Jiang, Z. Wu, T. Feng, J. Shi, Mater. Res. Bull., 2005, 40, 1521.
  • [37] G. Xia, S. Zhou, J. Zhang, J. Xu, J. Cryst. Growth, 2005, 279, 357.
  • [38] M. Kottaisamy, D. Jeyakumar, R. Jagannathan, M. Rao, Mater. Res. Bull., 1996, 31, 1013.
  • [39] Z. Xiu, S. Liu, M. Lü, H. Zhang, G. Zhou, Mater. Res. Bull., 2006, 41, 642.
  • [40] F. Gu, S.Wang, M. Lü,W. Zou, G. Zhou, D. Xu, D. Yuan, J. Cryst. Growth, 2004, 260, 507.
  • [41] S.Wang, F. Gu, M. Lü, X. Cheng,W. Zou, G. Zhou, S.Wang,Y. Zhou, J. Alloys and Compd., 2005, 394, 255.
  • [42] A.G. Merzhanov, Adv. Space Res., 2002, 29, 487.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0014-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.