Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
During the past decade methods of multiple classifier systems have been developed as a practical and effective solution for a variety of challenging applications. A wide number of techniques and methodologies for combining classifiers have been proposed in the past years in literature. In our work we present a new approach to multiple classifier systems using rough sets to construct classifier ensembles. Rough set methods provide us with various useful techniques of data classification. In the paper, we also present a method of reduction of the data set with the use of multiple classifiers. Reduction of the data set is performed on attributes and allows to decrease the number of conditional attributes in the decision table. Our method helps to decrease the number of conditional attributes of the data with a small loss on classification accuracy.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
393--406
Opis fizyczny
tab., bibliogr. 20 poz.
Twórcy
autor
autor
autor
- University of Information Technology and Management, H.Sucharskiego 2, 35-225 Rzeszów, Poland, zsuraj@wsiz.rzeszow.pl
Bibliografia
- [1] Bay, S.D.: Combining Nearest Neighbor Classifiers Through Multiple Feature Subsets, in: Proc. of 15 ICML, Morgan Kaufmann, Madison 1998.
- [2] Bazan, J., Nguyen, Son, H., Nguyen, Trung, T., Skowron, A., Stepaniuk, J.: Decision rules synthesis for object classification, in: E. Orlowska (ed.), Incomplete Information: Rough Set Analysis, Physica - Verlag, Heidelberg 1998, pp. 23-57.
- [3] Bazylevych, R.P., Melnyk, R.A., Rybak, O.G.: Circuit partitioning for FPGAs by the optimal circuit reduction method, VLSI Design, Vol. 11, 3(2000), 237-248.
- [4] Blake, C.L., Merz, C.J.: UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA, 1998. (http://www.ics.uci.edu/mlearn/mlrepository.html)
- [5] Cios, K.J., Pedrycz,W., ´ Swiniarski, R.W.: Data Mining. Methods for Knowledge Discovery, Kluwer Academic Publishers, Dordrecht 1998.
- [6] Delimata, P.: DMES - a data mining exploration system (manuscript).
- [7] Dasarathy, B., Sanchez, J., Townsend, S.: Nearest Neighbour Editing and Condensing Tools - Synergy Exploitation, Pattern Analysis and Applications 3(1), 2000, 19-30.
- [8] Gayar, N.: An Experimental Study of a Self-supervised Classifier Ensemble, in: Proceedings of International Conference on Computational Intelligence (ICCI 2004), Istanbul, Turkey, December 17-19, 2004.
- [9] Góra, G., Wojna, A. RIONA: A Classifier Combining Rule Induction and -NN Method with Automated Selection of Optimal Neighbourhood, Proceedings of the Thirteenth European Conference on Machine Learning, ECML 2002, Helsinki, Finland, Lecture Notes in Artificial Intelligence, 2430, Springer-Verlag, Berlin 2002, pp. 111-123.
- [10] Góra, G., Wojna, A.: RIONA: A New Classification System Combining Rule Induction and Instance-Based Learning, Fundamenta Informaticae, 51/4(2002), 369-390.
- [11] Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library ( COIL-20), Technical Report CUCS-005-96, Febuary 1996.
- [12] Nguyen, Hoa, S.: Data regularity analysis and applications in data mining. Ph. D. thesis, supervisor B. Chlebus, Warsaw University (1999).
- [13] Nguyen, Hoa, S., Bazan, Jan, G., Skowron, A., Nguyen, Son, H.: Layered Learning for Concept Synthesis. Transactions on Rough Sets I, Lecture Notes in Computer Science 3100, Springer, Berlin 2004, 187-208.
- [14] Nguyen, Son, H.: From Optimal Hyperplanes to Optimal Decision Trees. Fundamenta Informaticae 34/1-2 (1998), 145-174.
- [15] Pawlak, Z.: Rough sets: Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Dordrecht 1991.
- [16] Roli, F., Giacinto, G.: Design of Multiple Classifier Systems, Hybrid Methods in Pattern Recognition, Series in Machine Perception and Artificial Intelligence, Vol 47, May 2002.
- [17] Suraj, Z. Delimata, P.: On k-NN method with preprocessing, in: Proceedings on Workshop of Concurrency, Specification and Programming, Caputh, Germany September 24-26, 2004, Informatik Berichte 170, 2004, 217-228.
- [18] Wojnarski, M.: LTF-C: Architecture, Training Algorithm and Applications of New Neural Classifier. Fundamenta Informaticae, 54/1(2003), 89-105.
- [19] Wolpert, D.: Stacked Generalisation, Neural Networks, No. 5, 1992, 241-259.
- [20] Wróblewski, J.: Covering with Reducts - A Fast Algorithm for Rule Generation, Proceeding of RSCTC'98, Lecture Notes in Artificial Inteligence 1424, Springer Verlag, Berlin 1998, pp. 402-407.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0010-0077