PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Associative Omega-product of Processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The notion of an associative omega-product is applied to processes. Processes are one of the ways to represent behavior of Petri nets. They have been studied for some years as an alternative to traces and dependence graphs. One advantage of processes, as compared to traces, is a very simple way to define infinite concatenation. We take a closer look at this operation, and show that it is a free associative omega-product of finite processes. Its associativity simplifies some arguments about infinite concatenation, as illustrated by the proof of interleaving theorem.
Słowa kluczowe
Rocznik
Strony
333--345
Opis fizyczny
wykr., bibliogr. 17 poz.
Twórcy
Bibliografia
  • [1] Czaja, L.: Net-Definability of Process Languages, Fundamenta Informaticae, 37(3), 1999, 213-223.
  • [2] Czaja, L.: Process Languages and Nets, Theoret. Comp. Sci., 238(1-2), 2000, 161-181.
  • [3] Czaja, L.: Place/Transition Petri net evolutions: recording ways, analysis and Synthesis, Fundamenta Informaticae, 51(1-2), 2002, 43-58.
  • [4] Czaja, L.: On the Analysis of Petri nets and their Synthesis from Process Languages, Theoretical Informatics and Applications, 37(1), 2003, 17-38.
  • [5] Czaja, L., Kudlek, M.: ω-Process Languages for Place/Transition Nets, Fundamenta Informaticae, 47(3-4), 2001, 217-229.
  • [6] Desel, J., Reisig, W.: Place/Transition Petri Nets, in: Lectures on Petri Nets I: Basic Models (W. Reisig, G. Rozenberg, Eds.), Lecture Notes in Comp. Sci., Springer-Verlag, 1998, 122-173.
  • [7] Engelfriet, J.: Branching Processes of Petri Nets, Acta Inf., 28(6), 1991, 575-591.
  • [8] Gastin, P.: Infinite Traces, in: Semantics of Systems of Concurrent Processes (I. Guessarian, Ed.), number 469 in Lecture Notes in Comp. Sci., Springer-Verlag, 1990, 277-308.
  • [9] Gastin, P., Petit, A.: Infinite Traces, in: The Book of Traces (V. Diekert, G. Rozenberg, Eds.),World Scientific, 1995, 393-486.
  • [10] Kwiatkowska, M. Z.: On the domain of traces and sequential composition, in: TAPSOFT'91 (S. Abramsky, T. S. E. Maibaum, Eds.), number 493 in Lecture Notes in Comp. Sci., Springer-Verlag, 1991, 42-56.
  • [11] Mazurkiewicz, A.: Trace Theory, in: Petri Nets: Applications and Relationships to Other Models of Concurrency (W. Brauer,W. Reisig, G. Rozenberg, Eds.), number 255 in Lecture Notes in Comp. Sci., Springer-Verlag, 1987, 371-388.
  • [12] Mazurkiewicz, A.: Introduction to Trace Theory, in: The Book of Traces (V. Diekert, G. Rozenberg, Eds.), World Scientific, 1995, 3-41.
  • [13] Perrin, D., Pin, J.-E.: Mots infinis, Technical Report LITP Report 93.40, Institut Blaise Pascal, Université Paris VII, 1993.
  • [14] Perrin, D., Pin, J.-E.: Infinite Words. Automata, Semigroups, Logic and Games, Number 141 in Pure and Applied Mathematics, Elsevier, 2004.
  • [15] Redziejowski, R. R.: Adding an infinite product to a semigroup, in: Automata Theory: Infinite Computations (K. Compton, J.-E. Pin, W. Thomas, Eds.), number 28 in Dagstuhl Seminar Report, Internationales Begegungs- und Forschungszentrum für Informatik Schloss Dagstuhl, 1992, page 9.
  • [16] Redziejowski, R. R.: On Associative Omega-Products, Fundamenta Informaticae, 60(1-4), 2004, 333-350.
  • [17] Redziejowski, R. R.: Associative Omega-Products of Traces, Fundamenta Informaticae, 67(1-3), 2005, 175-185.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0010-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.