Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pawlak had proposed the notion of rough truth in 1987 [16]. The article takes a fresh look at this ``soft'' truth, and presents a formal system LR, that is shown to be sound and complete with respect to a semantics determined by this notion. LR is based on the modal logic S5. Notable is the rough consequence relation defining LR (a first version introduced in [9]), and rough consistency (also introduced in [9]), used to prove the completeness result. The former is defined in order to be able to derive roughly true propositions from roughly true premisses in an information system. The motivation for the latter stems from the observation that a proposition and its negation may well be roughly true together. A characterization of LR-consequence shows that the paraconsistent discussive logic J of Ja\'skowski is equivalent to LR. So, LR, developed from a totally independent angle, viz. that of rough set theory, gives an alternative formulation to this well-studied logic. It is further observed that pre-rough logic [3] and 3-valued ukasiewicz logic are embeddable into LR.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
139--151
Opis fizyczny
bibliogr. 19 poz.
Twórcy
autor
- Departtment of Mathematics and Statistics Indian Institute of Technology Kanpur 208016, India, mohua@iitk.ac.in
Bibliografia
- [1] Banerjee, M.: Rough sets and 3-valued Łukasiewicz logic, Fundamenta Informaticae, 32, 1997, 213-220.
- [2] Banerjee, M., Chakraborty, M. K.: Rough consequence and rough algebra, Rough Sets, Fuzzy Sets and Knowledge Discovery, Proceedings Int. Workshop on Rough Sets and Knowledge Discovery (RSKD'93) (W. P. Ziarko, Ed.),Workshops in Computing, Springer Verlag, London, 1994, 196-207.
- [3] Banerjee, M., Chakraborty, M. K.: Rough sets through algebraic logic, Fundamenta Informaticae, 28(3-4), 1996, 211-221.
- [4] Banerjee, M., Chakraborty, M. K.: Rough logics: a survey with further directions, in: Incomplete Information: Rough Set Analysis (E. Orłowska, Ed.), Studies in Fuzziness and Soft Computing, Springer Verlag, Heidelberg, 1998, 579-600.
- [5] Banerjee, M., Chakraborty, M. K.: Algebras from rough sets, in: Rough-neuro Computing: Techniques for Computing with Words (S. K. Pal, L. Polkowski, A. Skowron, Eds.), Springer Verlag, Berlin, 2004, 157-184.
- [6] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge, 2001.
- [7] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeano, S.: Łukasiewicz-Moisil Algebras, North Holland, 1991.
- [8] Bunder, M. W.: Rough consequence and Jaśkowski's D2 logics, preprint 2/04, School of Mathematics and Applied Statistics, University of Wollongong, Australia, 2004.
- [9] Chakraborty, M. K., Banerjee, M.: Rough consequence, Bull. Polish Acad. Sc. (Math.), 41(4), 1993, 299-304.
- [10] da Costa, N., Doria, F.: On Jaśkowski's discussive logics, Studia Logica, 54, 1995, 33-60.
- [11] Hughes, G. E., Cresswell, M. J.: A New Introduction to Modal Logic, Routledge, 1996.
- [12] Jaskowśki, S.: Propositional calculus for contradictory deductive systems, Studia Logica, 24, 1969, 143-157.
- [13] Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial, in: Rough Fuzzy Hybridization: A New Trend in Decision-Making (S. K. Pal, A. Skowron, Eds.), Springer Verlag, Singapore, 1999, 3-98.
- [14] Meheus, J.: An adaptive logic based on Jaśkowski's D2 , J. Phil. Logic, To appear.
- [15] Pawlak, Z.: Rough sets, Int. J. Comp. Inf. Sci., 11, 1982, 341-356.
- [16] Pawlak, Z.: Rough logic, Bull. Polish Acad. Sc. (Tech. Sc.), 35(5-6), 1987, 253-258.
- [17] Polkowski, L., Skowron, A.: Rough mereological calculi of granules: a rough set approach to computation, Computational Intelligence, 17(3), 2001, 472-492.
- [18] Read, S.: Thinking about Logic: an Introduction to the Philosophy of Logic, Oxford, 1995.
- [19] Skowron, A., Stepaniuk, J.: Tolerance approximation spaces, Fundamenta Informaticae, 27, 1996, 245-253.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0010-0032