PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation of crude oil in seawater and sand by mixed bacterial cultures

Identyfikatory
Warianty tytułu
PL
Rozkład ropy naftowej w wodzie morskiej i w przybrzeżnym piasku przez mieszane kultury bakteryjne
Języki publikacji
EN
Abstrakty
EN
Accidental oil spills at open sea is a common environmental problem. They lead to degradation of sea and shoreline life. In the last ten years there has been an increased interest in bioremediation using the enzymatic activity of the naturally occurring microorganisms. In this work the potential of mixed microbial cultures for biodegradation of crude oil in seawater and sand has been examined. Artificial seawater supplemented with nitrogen and phosphorus was inoculated with cultures isolated from refinery sludge. The same cultures were used for experiments in sand polluted by 5% (v/w) of crude oil. These experiments were performed in sterile and semi-natural (not sterile) conditions to see the degradation potential of isolated cultures, their growth characteristics and possible antagonisms between supplemented microorganisms and natural microflora. During the experiments the oxygen demand, number of bacteria (cfu) and optical density (ODH|1) were monitored. After 14 days of cultivation, the concentration of total petroleum hydrocarbons (TPH) in all samples was measured. All tested cultures had a potential for degradation of hydrocarbons in seawater and sand. After two weeks of experiment, loss of hydrocarbons in seawater polluted with crude oil was between 56.8% (A2 culture) and 64.4% (Al culture). The most effective culture for bioaugmentation of seawater does not have to be the best solution for bioaugmentation of sand. In sand the best degraders in sterile and semi-natural conditions were found in the mixed cultures isolated from Corinth refinery sludge. For this culture concentration of hydrocarbons in sterile sand was 73.2% lower than in control sample and in non-sterile sand 70.5% lower than in control (sterile sand) without bioaugmentation. Finally, the addition of seawater and fertilizers to sand had also a positive influence on contaminants degradation by naturally occurring microorganisms (48%). Experiments performed with different environments (seawater and sand) and under different conditions (sterilized material and semi-natural conditions) confirmed that cultures should be tested in semi-natural conditions especially when indigenous microflora cans posse's high degradation potential. Allochtonic cultures, very active in sterile conditions, after inoculation to natural environment can even slow down the degradation.
PL
Przypadkowe wycieki ropy na otwartym morzu są częstym problemem środowiskowym prowadzącym do degradacji życia morskiego jak i życia na wybrzeżu. Obecnie techniki są skoncentrowane na zebraniu oleju, wypaleniu in-situ pozostałości ropy, zbieraniu zanieczyszczonego piasku i likwidowaniu zanieczyszczeń lub magazynowaniu go na terenach przyległych. W ciągu ostatnich lat wzrosło zainteresowanie bioremediacją z użyciem mikroorganizmów aktywnych w rozkładzie zanieczyszczeń ropopochodnych. Celem tej pracy było sprawdzenie zdolności mikroorganizmów wyizolowanych ze środowisk zanieczyszczonych do biodegradacji ropy naftowej w wodzie morskiej oraz w piasku pobranym z wybrzeża. Sztuczna woda morska wzbogacona biogenami została zaszczepiona bakteriami wyizolowanymi z osadów rafineryjnych. Te same kultury zostały użyte również w doświadczeniu z piaskiem pobranym z wybrzeża Krety. Badania z użyciem piasku zanieczyszczonego 5% (v/w) ropy naftowej były przeprowadzone po jego uprzednim wysterylizowaniu i bez poddania go sterylizacji. Takie modyfikacje miały na celu: wykazanie, czy wyizolowane kultury potrafią sobie radzić z zanieczyszczeniem w warunkach semi-naturalnych oraz scharakteryzowanie ich wzrostu i możliwości wystąpienia reakcji antagonistycznych pomiędzy inokulowanymi szczepami a mikroflorą naturalną. W trakcie eksperymentu mierzono zużycie tlenu, liczebność bakterii (cfu) i gęstość optyczną prób. Po zakończeniu eksperymentów (po 14 dniach) zmierzono zawartość węglowodorów ropopochodnych (TPH - total petroleum hydrocarbons) przy użyciu spektrofotometrii w podczerwieni (IR). Wszystkie testowane kultury mieszane posiadały zdolność do rozkładu węglowodorów w wodzie morskiej i piasku. Po dwóch tygodniach eksperymentu usunięcie TPH w wodzie morskiej zanieczyszczonej ropą naftową było pomiędzy 56,8% (dla A2) i 64,4% (dla Al). Stwierdzono, iż kultury najefektywniej usuwające węglowodory w wodzie morskiej nie są najlepszymi dla piasku. W piasku najlepszy rozkład węglowodorów obserwowano w próbach zaszczepionych mieszaniną bakterii wyizolowanych z osadów rafinerii w Koryncie. Zawartość węglowodorów była odpowiednio o ponad 70% niższa niż w odpowiadającym kontrolach nieinokulowanych. Zaobserwowano, iż dodatek wody morskiej wzbogaconej biogenami do Piasku miał również pozytywny wpływ na usunięcie węglowodorów przez naturalnie występujące w piasku mikroorganizmy (48%). Otrzymane wyniki wskazują na konieczność przeprowadzania analiz w warunkach mi-naturalnych zwłaszcza, gdy autochtoniczna mikroflora może posiadać wysoki potencjał degradacyjny. a mikroflora wprowadzona do środowiska może nie tylko nie przyspieszyć rozkładu zanieczyszczeń, ale i go spowolnić
Rocznik
Strony
43--58
Opis fizyczny
tab., wykr., bibliogr. 37 poz.
Twórcy
autor
autor
  • Environmental Biotechnology Department, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
  • [1] Abbondanzi F., T. Campisi, A. Gussoni, A. lacondini, F. Malaspina, M. Raccagani, M. Visani: Microbial degradation of PAHs in soils - bioagumentation study in slurry reactor, [in:] Proceedings of the Second European Bioremediation Conference, Chania - Crete, Greece 2003, 512-515.
  • [2] Aichbcrger H., R. Braun, A.P. Loibner: Hydrocarbon contamination of the vadose zone -preliminary testing to predict remediation performance, [in:] Proceedings of the Second European Bioremediation Conference, Chania - Crete, Greece 2003, 67-70.
  • [3] Aldrett S., J.S. Bonncr, M.A. Mills, R.L. Autenreith, F.L. Stephens: Microbial degradation of crude oil in marine environments tested in a flask experiment, Wat. Res, 31, 11, 2840-2848 (1997).
  • [4] Alvinage E., D. Stoica, K. Iversen: Oil Pollution in the Baltic Sea and the Effects on Fish and Fisheries - Something to worry about?, Environmental Studies, Aarhus University 2001.
  • [5] Bachoon D.S., R. Araujo, M. Molina, R.E. Hodson: Microbial community dynamics and evaluation of bioremediation strategies in oil-impacted salt marsh sediment microcosms, Journal of Industrial Microbiology and Biotechnology, 27, 72-79 (2001).
  • [6] Diaz P.M., K..G. Boyd, S.J.W. Grinson, J.G. Burgess: Biodegradation of Crude Oil across a Wide Range of Salinities by an Extremely Halotolerant Bacterial Consortium MPD-M, Immobilized onto Polypropylene Fibers, Biotechnology and Bioenginccring, 79, 2, 145-153 (2002).
  • [7] Diaz M.P., S.J.W. Grigson, Ch.J. Peppiatt, J.G. Burgess: Isolation and Characterization of Novel Hydrocarbon-Degrading Eurythaline Consortia from Crude oil and Mangrove Sediments, Marine Biotechnology, 2, 522-532 (2000).
  • [8] Dutta T.T., S. Harayama: Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. Strain MBIC 4326, Applied and Environmental Microbiology, 67, 4, 1970-1974 (2001).
  • [9] Epstein P.R., J. Selber: OIL - A Life cycle analysis of its health and environmental impacts, The Center for Health and the Global Environment Harvard Medical School, 2002.
  • [10] Fiuza A., C. Vila: Bioremediation of sandy soil polluted by petroleum hydrocarbons - respirometric studies, [in.] Proceedings of the Second European Bioremediaton Conference, Chania - Crete, Greece, 2003, 55-58.
  • [11] Gauthier M.J., et al.: Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium, Int. J. Syst. Bacteriol., 42(4), 568-76 (1992).
  • [12] Gogou A., I. Bouloibassi, E.G. Stephanou: Marine organic geochemistry of the Eastern Mediterranean - Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments, Marine Chemistry, 68, 265-282 (2000).
  • [13] Huysman F., W. Verstraete: Water-facilitated transport of bacteria in saturated soil columns; influence of cell surface hydrophobicity and soil properties. Soil Biol. Biochem., 25, 83-90 (1993).
  • [14] Jain D.K., D.L. Collins-Thompson, H. Lee, J.T. Trevors: A drop-collapsing test for screening surfactant-producing microorganisms, Journal of Microbiological Methods, 13, issue 4, 271-279 (1991).
  • [15] Juneson Ch., O.P. Ward, A. Singh: Biodegradation of bis (2-ethylhexyl)phthalate in a soil slurry sequencing batch reactor. Process Biochemistry, 37, 305-313 (2001).
  • [16] Kasai Y, H. Kishira, S. Harayama: Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in marine environment, Applied and Environmental Microbiology, 12, 5625-5633 (2002).
  • [17] Korda A., P. Santas, A. Tenente, R. Santas: Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used, Appl. Microbiol. Biotechnol., 48, 677-686 (1997).
  • [18] Kuyakina M.S., I.B. Ivshina, L.V. Litvinenko, C.J. Cunningham, J.C. Philp: Biosurfactant enhanced crude oil mobilization in a soil system - laboratory simulation and mathematical modeling, [in:] Proceedings of the Second European Bioremediation Conference, Chania - Crete, Greece, 2003, 83-86.
  • [19] Lepo J.E., C.R. Cripe: Biodegradation of Polycyclic Aromatic Hydrocarbons (PAH) from crude oil sandy-beach microcosms, [in:] Proceedings of the 8th International Symposium on Microbial Ecology Bell CR, Microbial Biosystcms: New Frontiers, Canada 1999.
  • [20] Lindum P.W., U. Anthoni, C. Christophersen, L. Eberl, S. Molina, M. Givskov: N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required from swarming motUity of Serratia liquefaciens MG1, i. Bacteriol., 180, 6384-6388 (1998).
  • [21] Löser C., H. Scidel, A. Zchnsdorf, U. Stottmeister: Microbial degradation of hydrocarbons in soil during aerobic/anaerobic changes and under purely aerobic conditions, Appl. Microbiol. Biotechnol., 49, 631-636 (1998).
  • [22] Margcsin R., F. Schinner: Potenctial of halotolerant and halophilic microorganisms for biotechnology, Extremophilcs, 5, 73-83 (2001).
  • [23] Mehmannavaz R., S.O. Prasher, D. Ahmad: Cell surface properties of rhizobial strains isolated from soils contaminated with hydrocarbon: hydrophobicity and adhesion to sandy soil, Process Biochemistry, 36, 683-688 (2001).
  • [24] Michel E.M.B., I. Sokolovska, S.N. Agathos: Biodegradation ofdieselfuel in soil at low temperature by Rhodococcus erythropolis, [in:] Proceedings of the Second European Bioremediation Conference, Chania - Crete, Greece, 2003, 59-62.
  • [25] Oh Young-Sook, Sim Doo-Seup, Kim Sang-Jin: Effects of Nutrients on Crude Oil Biodegradation in the Upper Intertidial Zone, Marine Pollution Bulletin, 42, 12, 1367-1372 (2001).
  • [26] Piepre D.H., W. Reineke: Engineering bacteria for bioremediation, Current Opinion in Biotechnology, 11, 262-270 (2000).
  • [27] Rhykerd R.L., R.W. Weaver, K.J. Mclnnes: Influence of salinity on bioremediation of oil in soil, Environmental Pollution, 90, 1, 127-130 (1995).
  • [28] Romero M.C., M.C. Cazau, S. Giorgieri, A.M. Arambarri: Phenanthrene degradation by microorganisms isolated form a contaminated stream. Environmental Pollution, 101, 355-259 (1998).
  • [29] Shelton M.E., P.J. Chapman, S.S. Foss, W.S. Fisher: Degradation of weathered oil by mix marine bacteria and the toxicity of accumulated water-soluble material to two marine Crustacea, Arch. Environ. Contam. Toxicol., 36, 13-20 (1999).
  • [30] Singer M. E., W.R. Finnerty: Microbial Metabolism of Straight-Chain and Branched Alkanes, Petroleum Microbiology edited by M. Atlas, Macmalian Publishing Company, United States 1984, 1-59.
  • [31] Sloan N.A.: Oil Impacts on Cold-water Marine Resources: A Review Relevant to Parks Canada's Evolving Marine Mandate, Occasional Paper No. 11, Parks Canada, National Parks 1999.
  • [32] U.S. Congress, Office of Technology Assessment: Bioremediation for Marine Oil Spills - Background Paper, OTA-BP-O-70 Washington, DC, U.S. Government Printing Office 1991.
  • [33] Venosa D.A.D., J.R. Haines, et al.: Bioremediation of crude oil intentionally released on the shoreline of flower beach. Delaware, EPA- Bioremediation of Hazardous Waste 1995, 29-31.
  • [34] Vogel T.M.: Bioagumentation as a soil bioremediation approach, Current Opinion in Biotechnology, 7, 311-316 (1996).
  • [35] Yakimov M.M., et al.: Alcanivorax borkumensis gen. Nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium, International Journal of Systematic Bacteriology, 48, 339-348 (1998).
  • [36] Yang L., C. Lai, W.K. Sheieh: Biodegradation of dispersed diesel fuel under high salinity conditions, Water Res., 34, 13, 3303-3314 (2000).
  • [37] Zhang Y., R.M. Miller: Enhanced octadecane dispersion and biodegradation by a Pseudomonas Rhamnolipid surfactant (biosurfactant), Applied and Environmental Microbiology, 58(10), 3276-3282 (1992).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0009-0087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.