PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multistrategy Operators for Relational Learning and Their Cooperation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Traditional Machine Learning approaches based on single inference mechanisms have reached their limits. This causes the need for a framework that integrates approaches based on abduction and abstraction capabilities in the inductive learning paradigm, in the light of Michalski's Inferential Theory of Learning (ITL). This work is intended as a survey of the most significant contributions that are present in the literature, concerning single reasoning strategies and practical ways for bringing them together and making them cooperate in order to improve the effectiveness and efficiency of the learning process. The elicited role of an abductive proof procedure is tackling the problem of incomplete relevance in the incoming examples. Moreover, the employment of abstraction operators based on (direct and inverse) resolution to reduce the complexity of the learning problem is discussed. Lastly, a case study that implements the combined framework into a real multistrategy learning system is briefly presented.
Wydawca
Rocznik
Strony
389--409
Opis fizyczny
bibliogr. 43 poz.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] Boström, H., Idestam-Almquist, P.: Specialization of Logic Programs by Pruning SLD-trees, Proceedings of the 4th International Workshop on Inductive Logic Programming (S. Wrobel, Ed.), GMD-Studien, vol. 237 of GMD-Studien, Bad Honnef/Bonn, 1994, 31-48.
  • [2] Bournaud, I., Courtine, M., J.-D., Z.: Propositionalization for Clustering Symbolic Relational Descriptions, Proceedings of the Twelfth International Conference on Inductive Logic Programming (ILP 2002), Sydney Australia, July 2002.
  • [3] Bournaud, I., Courtine, M., Zucker, J.-D.: Abstractions for Knowledge Organization of Relational Descriptions, Proceedings of Abstraction, Reformulation, and Approximation, 4th International Symposium, SARA 2000 (B. Y. Choueiry, T. Walsh, Eds.), Lecture Notes in Computer Science, vol. 1864 of Lecture Notes in Computer Science, Springer, 2000, 87-106.
  • [4] Bredeche, N., Zucker, J.-D., Zhongzhi, Z.: Perceptual Learning and Abstraction in Machine Learning, Proceedings of the 2nd IEEE International Conference on Cognitive Informatics (ICCI'03), 2003, 18-25.
  • [5] Carpineto, C., Romano, G.: Galois: an order-theoric approach to conceptual clustering, Proceedings of the International Conference on Machine Learning, Ahmerst, 1993, 33-40.
  • [6] Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases, Springer, 1990.
  • [7] Clark, K.: Negation as Failure, in: Logic and Databases (H. Gallaire, J. Minker, Eds.), Plenum Press, 1978, 293-322.
  • [8] Cohen, P., Feigenbaum, E., Eds.: The Handbook of Artificial Intelligence, vol. 3, Morgan Kaufmann, 1981.
  • [9] De Raedt, L.: Interactive Theory Revision - An Inductive Logic Programming Approach, Academic Press, 1992.
  • [10] Dimopoulos, Y., Kakas, A.: Abduction and Learning, in: Advances in Inductive Logic Programming (L. D. Raedt, Ed.), IOS Press, 1996, 144-171.
  • [11] Džeroski, S., Lavrač, N., Eds.: Relational Data Mining, Springer, Berlin, 2001.
  • [12] Eshghi, K., Kowalski, R.: Abduction Compared to Negation by Failure, Proceedings of the 6th International Conference on Logic Programming (G. Levi, M. Martelli, Eds.), The MIT Press, 1989, 234-255.
  • [13] Esposito, F., Fanizzi, N., Ferilli, S., Semeraro, G.: A generalization model based on OI-implication for ideal theory refinement, Fundamenta Informaticae, 47, 2001, 15-33.
  • [14] Esposito, F., Ferilli, S., Fanizzi, N., Basile, T., Di Mauro, N.: Incremental Multistrategy Learning for Document Processing, Applied Artificial Intelligence, 17(8/9), 2003, 859-883.
  • [15] Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy Theory Revision: Induction and Abduction in INTHELEX, Machine Learning, 38(1/2), 2000, 133-156.
  • [16] Giordana, A., Roverso, D., Saitta, L.: Abstracting Concepts with Inverse Resolution, Proceedings of the 8th International Workshop on Machine Learning, Morgan Kaufmann, Evanston, IL, 1991, 142-146.
  • [17] Giordana, A., Saitta, L.: Abstraction: A General Framework for Learning, Working Notes of the Workshop on Automated Generation of Approximations and Abstractions, Boston, MA, 1990, 245-256.
  • [18] Giunchiglia, F., Walsh, T.: A Theory of Abstraction, Artificial Intelligence, 57(2/3), 1992, 323-389.
  • [19] Kakas, A., Kowalski, R., Toni, F.: Abductive Logic Programming, Journal of Logic and Computation, 2(6), 1993, 718-770.
  • [20] Kakas, A., Mancarella, P.: On the Relation between Truth Maintenance and Abduction, Proceedings of the 1st Pacific Rim International Conference on Artificial Intelligence, Nagoya, Japan, 1990, 438-443.
  • [21] Khardon, R.: Learning function-free Horn expressions, Machine Learning, 37(3), December 1999, 241-275.
  • [22] Kramer, S., Lavrač, N., Flach, P.: Propositionalization Approaches to Relational Data Mining, in: Relational Data Mining (S. Džeroski, N. Lavrač, Eds.), Springer, September 2001, 262-291.
  • [23] van der Laag, P.: An Analysis of Refinement Operators in Inductive Logic Programming, Ph.D. Thesis, Erasmus University, Rotterdam, The Netherlands, 1995.
  • [24] Lamma, E., Mello, P., Milano, M., Riguzzi, F., Esposito, F., Ferilli, S., Semeraro, G.: Cooperation of Abduction and Induction in Logic Programming., in: Abductive and Inductive Reasoning: Essays on their Relation and Integration (A. Kakas, P. Flach, Eds.), Kluwer, 2000, 233-252.
  • [25] Lloyd, J.: Foundations of Logic Programming, 2nd edition, Springer, 1987.
  • [26] Mancarella, P., Terreni, G.: An Abductive Proof Procedure Handling Active Rules, AI*IA 2003: Advances in Artificial Intelligence, 8th Congress of the Italian Association for Artificial Intelligence, Pisa, Italy, September 23-26, 2003, Proceedings (A. Cappelli, F. Turini, Eds.), Lecture Notes in Computer Science, vol. 2829 of Lecture Notes in Computer Science, Springer, 2003.
  • [27] Michalski, R.: A Theory and Methodology of Inductive Learning, in: Machine Learning: an artificial intelligence approach (R. Michalski, J. Carbonell, T. Mitchell, Eds.), vol. I, Morgan Kaufmann, San Mateo, CA, 1983, 83-134.
  • [28] Michalski, R.: Inferential Theory of Learning. Developing Foundations for Multistrategy Learning, in: Machine Learning. A Multistrategy Approach (R. Michalski, G. Tecuci, Eds.), vol. IV, Morgan Kaufmann, San Mateo, CA, 1994, 3-61.
  • [29] Mitchell, T.: Generalization as Search, Artificial Intelligence, 18, 1982, 203-226.
  • [30] Muggleton, S., De Raedt, L.: Inductive Logic Programming, Journal of Logic Programming, 19/20, 1994, 629-679.
  • [31] Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming, vol. 1228 of Lecture Notes in Artificial Intelligence, Springer, 1997.
  • [32] Plaisted, D.: Theorem Proving with Abstraction, Artificial Intelligence, 16, 1981, 47-108.
  • [33] Reiter, R.: Equality and Domain Closure in First Order Databases, Journal of ACM, 27, 1980, 235-249.
  • [34] Rouveirol, C., Puget, J.: Beyond Inversion of Resolution, Proceedings of the 7th International Conference on Machine Learning,Morgan Kaufmann, Austin, TX, 1990, 122-130.
  • [35] Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A Logic Framework for the Incremental Inductive Synthesis of Datalog Theories, Proceedings of the 7th International Workshop on Logic Program Synthesis and Transformation (N. Fuchs, Ed.), LNCS, vol. 1463 of LNCS, Springer, 1998, 300-321.
  • [36] Stahl, I.: Predicate Invention in Inductive Logic Programming, Advances in Inductive Logic Programming (L. D. Raedt, Ed.), IOS Press, Amsterdam, 1996, 34-47.
  • [37] Stone, P., Veloso, M. M.: Layered Learning, Machine Learning: ECML 2000, Proceedings of the 11th European Conference on Machine Learning, vol. 1810, Springer, Berlin, 2000, 369-381.
  • [38] Subramanian, D., Genesereth, M.: The relevance of irrelevance, Proceedings of the 10th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1987, 416-422.
  • [39] Tecuci, G., Kodratoff, Y.: Apprenticeship learning in nonhomogeneous domain theories, in: Machine Learning. A Multistrategy Approach (Y. Kodratoff, R. Michalski, Eds.), vol. III, Morgan Kaufmann, San Mateo, CA, 1990, 514-552.
  • [40] Tenenberg, J.: Preserving Consistency Across Abstraction Mappings, Proceedings of the 10th International Joint Conference on Artificial Intelligence,Milan, Italy, 1987, 1011-1014.
  • [41] Utgoff, P.: Shift of Bias for Inductive Concept Learning, in: Machine Learning: an artificial intelligence approach (R. Michalski, J. Carbonell, T. Mitchell, Eds.), vol. II, Morgan Kaufmann, Los Altos, CA, 1986, 107-148.
  • [42] Zucker, J., Bredeche, N., Saitta, L.: Abstracting Visual Percepts to Learn Concepts, Proceedings of Abstraction, Reformulation and Approximation, 5th International Symposium, SARA 2002 (S. Koenig, R. C. Holte, Eds.), Lecture Notes in Computer Science, vol. 2371 of Lecture Notes in Computer Science, Springer, 2002, 256-273.
  • [43] Zucker, J.-D.: Semantic Abstraction for Concept Representation and Learning, Proceedings of the 4th International Workshop on Multistrategy Learning (R. S. Michalski, L. Saitta, Eds.), 1998, 157-164.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0009-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.