PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Click chemistry - czyżby rewolucja w syntezie organicznej?

Autorzy
Identyfikatory
Warianty tytułu
EN
Click chemistry - a revolution in organic synthesis?
Języki publikacji
PL
Abstrakty
EN
In 2001 prof. K.B. Sharpless from Scripps Institute has announced a new idea for an easier and faster molecular discovery, named click chemistry. This concept bases on the following observations: -currently organic chemists invest too much effort in assembling the structure, although it is the function that is sought. The function can be also found in molecules that are more easy to synthesise. -nature prefers carbon-heteroatom bond formation and most biomolecules are formed from small building blocks containig and connected by such bonds. Thus, the focus should be given to the efficient carbon-heteroatom bond formation. -estimated pool of potential drug-like molecules (<500 Da, <30 non-hydrogen atoms, only C, H, O, N, S, P, F, Cl, Br, stable at room temperature, in the presence of water and air) is between 1062-1063. This is the space for exploration. Click chemistry embraces therefore a set of powerful! reactions which must be modular, wide in scope, highly yielding, generating easily removable byproducts (with no need for chromatographic purification) and stereoselective. These reaction should be also insensitive to oxygen and water and preferably carried out under simple conditions. Click reactions achieve their efficienty due to the high thermody-namic driving force, usually greater than > 20 kcal/mol (thus can be recognized as spring-loaded for a single trajectory). Examples of these reactions include: nucleo-philic opening of strained rings (epoxides, aziridines), cycloadditions (e.g. 1,3-di-polar or Diels-Alder type reaction), additions to carbon-carbon multiple bond (epo-xidation, dihydroxylation, Michael addition) and some types of carbonyl chemistry . An illustration of this concept is multigram 4-step synthesis of products 2a and 2b (Scheme 2) without the use of chromatography. Click chemistry idea was discussed in detail by Sharpless in [1] and [4]. Huisgen 1,3-dipolar cycloadditon is cream of the crop of various click reactions and was used in many notable applications of click chemistry concept, high-ligh-ted in this review. This reaction is strongly thermodynamically activated (35-50 kcal/mol), modular and of wide scope, it shows also perfect atom economy and provides products with high yield after usually simple workup. Moreover, due to the stability of reactants and 1,2,3-triazoles to various reactions conditions, including oxygen and water, this cycloaddition can be carried out in water. Target guide synthesis combined with 1,3-dipolar Huisgen reaction was used for finding new, most potent (active in femtomolar concentration) acetylcholine este-rase inhibitors and carbonic anhydrase inhibitors 5a,b. Other inhibitors developed by synthesis and screening of 1,2,3-triazole libraries include a-l,3-fukosyltransferase VI, HlV-prote-ase. 1,3-Dipolar cycloaddition was also used for modification of antibiotic tyrosidine and vancomycine and the modified products 10a,b and 11a,b exhibit better therapeutic index and activity respectively. Important applications of Huisgen reaction in molecular biology include bioconiugation and labeling techniques. Cowpea virus was efficiently labeled by fluorescein derivatives and cell surfaces were decorated by various biotin derivatives using appropriate azide-alkyne components. Click chemistry in this field was also used for designing new methods for labeling protein, in vitro or in vivo protein profiling (Scheme 11) [27] and DNA sequencing. Many important applications of 1,3-Huisgen cycloaddition are found in material chemistry. These include efficient synthesis of dendrimers wihout the use of chromatography ordendronised polymers. 1,2,3-Triazole linker formation was utilised for functionalisation of poly(norbornenes), modular copolymer synthesis and silicon waffers or gold surface modification. 1,3-Dipolar cycloaddition was also used in the synthesis of new fluorescent cumarines 54, two-photon absorption chromophores 55 and water-soluble calixarenes 56. Huisgen reaction was recently widely explored for modification of natural products and biomolecules and many interesting 1,2,3-triazole derivatives of sugars, aminoacids and peptides, lipids, steroids and alkaloids were synthesised (62-74). In summary, in a relatively short period of time after its introduction, click chemistry concept was widely approved in various areas and resulted in many important applications. Thus it can be regared as a versatile toolbox for "production of molecular properties".
Rocznik
Strony
583--611
Opis fizyczny
Bibliogr. 52 poz., svhem.
Twórcy
autor
  • Zakład Stereochemii Organicznej, Wydział Chemii, Uniwersytet im. A. Mickiewicza, ul. Grunwaldzka 6, 60-780 Poznań, Karol.kacprzak@gmail.com
Bibliografia
  • [1] H.C. Kolb. M.G. Finn, K.B. Sharpless, Angew. Chem., 2001, 40, 2005.
  • [2] (a) R. Mannhold, H. Kubinyi, G. Folkers, W. Bannwarth, B. Hinzen (red.), Combinatorial Chemistry: From Theory to Application. Wiley-VCH, Weinheim, 2005; (b) K.C. Nicolaou. R. Hanko. W. Hartwig (red.), Handbook of Combinatorial Chemistry: Dmgs, Catalysis, Materials, Wiley-VCH, Weinheim. 2002; (c) nieocenionym źródłem informacji jest czasopismo Journal of Combinatorial Chemistry wydawane przez ACS.
  • [3] R.S. Bohacek, C. McMartin, W.C. Buida, Med. Res. Rev., 1996. 16. 3.
  • [4] H.C. Kolb, K.B. Sharpless, Drug Discovery Today, 2003,8, 1128.
  • [5] (a) R. Huisgen, [w:] 1,3-Dipolar Cydoaddition Chemistry. (red. A. Padwa). Wiley, New York 1984, 1.; (b) A. Padwa, [w;] Comprehensive Organic Synthesis. tom 4, (red. B. Trost), Pergamon: Oxford, 1991, 1069; (c) R. Huisgen, Angew. Chem. Int. Ed., 1963,14. 565; (d) R. Huisgen, Angew Chem. 1963. 75, 742-754; Angew. Chem. Int. Ed., 1963, 14, 633.
  • [6] (a) A.R. Katritzky, Y. Zhang, S.K. Singh, Heterocycles. 2003. 60. 1225 i prace tam cytowane (b) A.C. Tome, Sci. Synth., 2004, 13, 415;
  • [7] (a) V.V. Rostovtsev, L.G. Green, V.V. Fokin. K.B. Sharpless, Angew. Chem. Int. Ed., 2002, 41. 2596; (b) C.W. Tomoe, C. Christensen, M. Meldal, J. Org. Chem., 2002, 67, 3057; (c) W.G. Lewis. F.G. Magailon, V.V. Fokin, M.G. Finn, J. Am. Chem. Soc.. 2004, 126. 9152; (d) K.B. Sharpless. V. Fokin, V. Rostovsev, L. Green, F. Himo, Pat. Appl. 2003, WO 03/101972, Chem. Abstr., 2004, 140, 27830.
  • [8] (a) Z.-X. Wang, H.-L. Qin, Chem. Commun., 2003, 2450; (b) Z. Li, T.S. Seo, .J. Ju, Tetrahedron Lett, 2004, 45, 3143.
  • [9] np. A.R. Katritzky, S.K. Singh, J. Org. Chem., 2002, 67, 9077; zobacz też prace [l0b, 29, 31].
  • [10] (a) K. Kacprzak, Synlett, 2005, 943; (b) P. Appukkuttan; W. Dehaen; V.V. Fokin; E. Van der Eycken, Org. Lett., 2004, 6,4223; (c) A.K. Feldman, B. Colasson, V.V. Fokin. Org. Lett., 2004, 6. 3897.
  • [11] (a) B.E. Blass, K.R. Coburn, A.L. Faulkner, W.L. Seibel, A. Srivastava, Tetrahedron Lett., 2003, 44, 2153; (b) L. Garanti, G. Molteni, Tetrahedron Lett. 2003, 44. 1133.
  • [12] (a) I. Akritopoulou-Zanze, V. Gracias, S.W. Djuric, Tetrahedron Lett. 2004, 45,8439; (b) B. Khanetsky, D. Dallinger, C.O. Kappe, J. Comb. Chem., 2004, 6. 884.
  • [13] (a) HJ. Smith, C. Simons (red.), Enzymes and Their Inhibitors: Drug Development, CRC Press, 2004; (b) Burger’s Medicinal Chemistry Drug Discovery (red. DJ. Abraham), Wiley. New Jersey 2003.
  • [14] (a) W.G. Lewis, L.G. Green, F. Grynszpan. Z. Radič, P.R. Carlier, P. Taylor, M.G. Finn, K.B. Sharpless, Angew. Chem. Int. Ed., 2002, 41, 1053; (b) R. Manetsch, A. Krasiński, Z. Radie. J. Raushel. P. Taylor. K.B. Sharpless, H.C. Kolb, J. Am. Chem. Soc. 2004, 126. 12809.
  • [15] A. Krasiński. Z. Radič, Z. Manetsch, J. Raushel, P. Taylor. K.B. Sharpless. H.C. Kolb. J. Am. Chem. Soc., 2005, 127, 6686.
  • [16] V.P. Mocharla, B. Colasson, L.V. Lee, S. Roper, K.B. Sharpless. Ch.-H. Wong. H.C. Kolb. Angew. Chem. Int. Ed. 2005,44, 116.
  • [17] L.V. Lee, M.L. Mitchell, S.-J. Huang, V.V. Fokin, K.B. Sharpless, Ch.-H. Wong, J. Am. Chem. Soc., 2003, 125, 9588.
  • [18] A. Brik, J. M, Y.-Ch. Lin, J.H. Elder, D.S. Goodsell, AJ. Olson, V.V. Fokin, K.B. Sharpless. Ch.-H. Wong, Chem Bio Chem, 2003, 4, 1246.
  • [19] H. Lin, Ch.T. Walsh, J. Am. Chem. Soc., 2004, 126, 13998.
  • [20] X. Fu, Ch. Albermann. Ch. Zhang, J.S. Thorson. Org. Lett., 2005, 7. 1513.
  • [21] P.F. van Swieten, M.A. Leeuwenburgh, B.M. Kessler, H.S. Overkleeft, Org. Biomol. Chem., 2005, 3, 20.
  • [22] Q. Wang. T.R. Chan, R. Hilgraf, V.V. Fokin, K.B. Sharpless, M.G. Finn. J. Am. Chem. Soc., 2003, 125, 3192.
  • [23] N.J. Agard, J.A. Prescher. C.R. Bertozzi, J. Am. Chem. Soc., 2004. 126, 15046.
  • [24] (a) AJ. Link, M.K.S. Vink, D.A. Tirrell, J. Am. Chem. Soc., 2004, 126. 10598; (b) AJ. Link, D.A. Tirrell, J. Am. Chem. Soc. 2004, 126, 11164.
  • [25] A. Deiters. T.A. Cropp, M. Mukherji, J.W. Chin, J.Ch. Anderson, P.G. Schultz, J. Am. Chem. Soc. 2003, 125, 11782.
  • [26] A.E. Speers, B.F. Cravatt, Chemistry&Biology, 2004, 11. 535.
  • [27] A.E. Speers, G.C. Adam, B.F. Cravatt, J. Am. Chem. Soc., 2003, 125, 4686.
  • [28] (a) T.S. Seo, Z. Li, H. Ruparel, J. Ju, J. Org. Chem., 2003, 68, 609; (b) Z. Li, T.S. Seo, J. Ju. Tetrahedron Lett., 2004, 45, 3143.
  • [29] F. Perez-Balderas, M. Ortega-Muńoz, J. Morales-Sanfrutos, F. Hernandez-Mateo, F.G. Calvo-Flores, J.A. Calvo-Asin, J. Isac-Garcia, F. Santoyo-Gonzalez, Org. Lett., 2003, 5, 1951.
  • [30] K. Kacprzak, dane niepublikowane.
  • [31] P. Wu, A.K. Feldman. A.K. Nuget, C.J. Hawker, A. Scheel, B. Voit, J. Pyun, J.M..I Frechet, K. B. Sharpless, V.V. Fokin, Angew.Chem. Int. Ed., 2004, 43, 3928.
  • [32] B. Helms, J.L. Mynar, CJ. Flawker, J.M.J. Frechet, J. Am. Chem. Soc., 2004, 126, 15020.
  • [33] W.H. Binder, Ch. Kluger, Macromolecules, 2004, 37, 9321.
  • [34] J.A. Opsten, J.C.M. van Hest, Chem. Commun., 2005, 57.
  • [35] (a) W.L. Mock, A. Irra, J.P Wepsiec, M. Adhya, J. Org. Chem., 1989, 54, 5302; (b) W.L. Mock, Top. Curr. Chem., 1995, 175, 1.
  • [36] (a) T.C. Krasia, J.H.G. Steinke, Chem. Commun., 2002, 22; (b) D. Tuncel, J.H.G. Steinke, Chem. Commun., 2002, 496.
  • [37] T. Lummerstorfer, H. Hoffmann, J. Phys. Chem. B., 2004, 108. 3963.
  • [38] J.K. Lee, Y.S. Chi, I.S. Choi, Langmuir, 2004, 20, 3844.
  • [39] K. Sivakumar, F. Xie, B.M. Cash, S. Long, H.N. Barnhill, Q. Wang. Org. Lett., 2004, 6, 4603.
  • [40] M. Parent, O. Mongin, K. Karnada, C. Katan, M. Blanchard-Desce, Chem. Commun., 2005. 2029.
  • [41] E.-H. Ryu, Y. Zhao, Org. Lett., 2005, 7, 1035.
  • [42] J. Marco-Contelles, C.A. Jimenez, Tetrahedron, 1999, 55, 10511.
  • [43] R.A. Akula, D.P. Temelkoff, N.D. Artis, P. Norris, Heterocycles, 2004, 63, 2719
  • [44] S. Chittaboina, F. Xie, Q. Wang. Tetrahedron Lett., 2005. 46, 2331.
  • [45] (a) M. Moore, P. Norris. Tetrahedron Lett., 1998. 39. 7027; (b) S. Freeze. P. Norris. Heterocycles, 1999, 51. 1807.
  • [46] F. Fazio. M.C. Bryan, O. Blixt. J.C. Paulson. Ch.-H. Wong. J. Am. Chem. Soc. 2002. 124. 14397.
  • [47] S. Punna, J. Kuzelka, Q. Wang, M.G. Finn, Angew. Chem. Int. Ed. 2005. 44. 2215.
  • [48] H.J. Musiol. S. Dong, M. Kaiser, R. Bausinger, A. Zumbusch, U. Bertsch, L. Moroder, ChemBio-Chem, 2005, 6, I.
  • [49] Y. Saito, V. Escuret, D. Duramtel, F. Zoulim. R.F. Schinazi. L.A. Agrofoglio. Bioorg. Med. Chem. 2003. 11. 3633.
  • [50] (a) P.L. Suarez. Z. Gandara, G. Gomez and Y. Fali. Tetrahedron Lett. 2004. 45. 4619; (b) B.Ch. Suh. H.B. Jeon, G.H. Posner and S.M. Silverman, Tetrahedron Lett., 2004. 45. 4623.
  • [51] K. Kacprzak, M. Migas, A. Plutecka, U. Rychlewska, J. Gawroński, Heterocydes. 2005, 65.
  • [52] S. Roper. M.H. Franz, R. Wartcho and H.M.R. Hoffmann, Org. Letters. 2003. 5. 2773.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0008-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.