PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability of forward-backward finite difference schemes for certain problems in biology

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We presemt a discretization method for a generalized von Foerster-type equation in many spatial variables. Stability of finite difference schemes on regular meshes is studied. If characteristic curves are decreasing, there are forward difference quotients applied. Otherwise, the derivatives are replaced by backward difference quotients.
Słowa kluczowe
Twórcy
Bibliografia
  • [1] L. M. Abia and J. C. López-Marcos, On the numerical integration of non-local terms for age-structured population models, Math. Biosci. 157 (1999), 147-167.
  • [2] A. S. Ackleh and R. R. Ferdinand, A nonlinear phytoplankton aggregation model with light shading, SIAM J. Appl. Math. 60 (1999), 316-336.
  • [3] F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York 2001.
  • [4] R. Ciarski, Stability of difference equations generated by quasilinear differential functional problems, Demonstratio Math. 35 (2002), 557-571.
  • [5] M. Czyżewska-Ważewska, A. Lasota and M. C. Mackey, Maximizing chances of survival, J. Math. Biol. 13 (1981), 149-158.
  • [6] A. L. Dawidowicz and K. Łoskot, Existence and uniques of solution of some integro-differential equation, Ann. Polon. Math. 47 (1986), 79-87.
  • [7] M. El-Doma, Analysis of nonlinear integro-differential equations arising in age-dependent epidemic models, Nonlinear Anal. 11 (1987), 913-937.
  • [8] J. Eller, I. Györi, M. Zöllei and F. Krizsa, Modelling Thrombopoiesis Regulation-I, Comput. Math. Appl. 14 (1987), 841-848.
  • [9] H. von Foerster, Some remarks on changing populations, in: The Kinetics of Celural Proliferation, Grune and Stratton, New York 1959.
  • [10] M. E. Gurtin and R. McCamy, Non-linear age-dependend Population Dynamics, Arch. Ration. Mech. Anal. 54 (1974), 281-300.
  • [11] I. Györi, Some mathematical aspects of modeling cell population dynamics, Comput. Math. Appl. 20 (1990), 127-138.
  • [12] D. Jaruszewska-Walczak, Z. Kamont, Difference methods for quasilinear hyperbolic differential functional systems on the Haar pyramid, Bull. Belg. Math. Soc. 10 (2003), 267-290.
  • [13] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer Academic Publishers 1999.
  • [14] N. Keyfitz, Introduction to the Mathematics of Population, Addison-Wesley, Reading 1968.
  • [15] H. L. Langhaar, General population theory in the age-time continuum, J. Franklin Inst. 293 (1972), 199-214.
  • [16] H. Leszczyński, Convergence results for unbounded solutions of first order partial differential equations, Ann. Polon. Math. 54 (1996), 1-16.
  • [17] H. Leszczyński and P. Zwierkowski, Existence of solutions to generalized von Foerster equations with functional dependence, Ann. Polon. Math. 83 (2004), 201-210.
  • [18] H. Leszczyński, P. Zwierkowski, Stability of finite difference schemes for certain problems in biology, Appl. Math. 31 (2004), 13-30.
  • [19] A. J. Lotka, Elements of Physical Biology, Wiliams and Wilkins, Baltimore 1925, republished as Elements of Mathematical Biology, Dover, New York 1956.
  • [20] T. Malthus, An Essay on the Principle of Population, London, St. Paul’s Church Yard 1798.
  • [21] D. B. Meade and F. A. Milner, S-I-R epidemic model with directed diffusion, in: Mathematical Aspects of Human Diseases, Appl. Math. Monographs 3 C.N.R., Giardini, Pisa 1992, 79-90.
  • [22] A. M. Nakhushev, Equations of Mathematical Biology, (in Russian) Moscow "Vysshaya Shkola" 1995.
  • [23] V. Skakauskas, Large time behavior in a density-dependent population dynamics problem with age structure and child care, in: Mathematical modelling of population dynamics, Banach Center Publ. 63 (2004), 243-258.
  • [24] A. N. Wood, Obtaining birth and mortality patterns from structured population trajectories, Ecological Monographs 61 (1994), 22-44.
  • [25] P. F. Verhulst, Recherches mathématiques sur la loi d’accroissement de la population, Mém. Acad. Roy. Brussels 18 (1845), 1-38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0008-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.