PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Functions preserving a cone preorder and their duals

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper isotone functions and their dual cones are studied. Special attention is devoted to functions preserving cone preorders. This isotonicity is characterized by integral inequalities. The result yields some generators of dual cones of isotone functions. As an application a generalization of Steffensen Inequality is given.
Twórcy
autor
Bibliografia
  • [1] T. Ando, Majorization, doubly stochastic matrices and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163-243.
  • [2] W. Chan, F. Proschan and J. Sethuraman, Schur-Ostrowski theorems for functionals on \(L^1 (0, 1)\), SIAM. J. Math. Anal. 18 (1987), 566-578.
  • [3] K. M. Chong and N. M. Rice, Equimeasurable rearrangements of functions, Queen’s Papers in Pure and Applied Math. 28 (1971), 1-177.
  • [4] K. M. Chong, Some extensions of a theorem of Hardy, Littlewood and Pólya and their applications, Canad. J. Math. 26 (1974), 1321-1340.
  • [5] P. W. Day, Decreasing rearrangement and doubly stochastic operators, Trans. Amer. Math. Soc. 178 (1973), 383-392.
  • [6] A. M. Dean and J. S. Verducci, Linear transformations that preserve majorization, Schur concavity, and exchangeability, Linear Algebra Appl. 127 (1990), 121-138.
  • [7] M. L. Eaton and M. D. Perlman, Reflection groups, generalized Schur functions, and the geometry of majorization, Ann. Probab. 5 (1977), 829-860.
  • [8] R. G. Farrell, Multivariate calculation. Use of the continuous groups, Springer-Verlag, New York Inc., 1985.
  • [9] A. Giovagnoli and H. P. Wynn, G-majorization with applications to matrix orderings, Linear Algebra Appl. 67 (1985), 111-135.
  • [10] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952.
  • [11] H. Joe, Generalized majorization orderings and applications, Stochastic Inequalities, IMS Lecture Notes - Monograph Series vol 22 (1993), 145-158.
  • [12] W. A. J. Luxemburg, Rearrangement invariant Banach function spaces, Queen’s in Pure and Applied Math. 10 (1967), 83-144.
  • [13] A. W. Marshall and I. Olkin, Inequalities: theory of majorization and its applications, Academic Press, New York, 1979.
  • [14] A. W. Marshall, D. W. Walkup and R. J. B. Wets, Order-preserving functions; application to majorization and order statistics, Pacific J. Math. 23 (1967), 569-584.
  • [15] M. Niezgoda and Z. Otachel, Differentiable transformations preserving a cone preordering, Linear Algebra Appl. 221 (1995), 59-67.
  • [16] M. Niezgoda, Linear maps preserving group majorization, Linear Algebra Appl. 330 (2001), 113-127.
  • [17] Z. Otachel, Preorders induced by duals of some cones, Proccedings of Prague Mathematical Conference’96 (1996), 277-282.
  • [18] Z. Otachel, Spectral Orders and Isotone Functionals, Linear Algebra Appl. 252 (1997), 159-172.
  • [19] A. Ostrowski, Sur quelques applications des fonction convexes et concaves au sens de I. Schur, J. Math. Pures Appl. IX, ser 31 (1952), 253-292.
  • [20] Y. Rinott, Multivariate majorization and rearrangement inequalities with applications to probability and statistics, Israel J. Math. 15 (1973), 60-77.
  • [21] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
  • [22] I. Schur Über Eine Klasse Von Mittelbildungen Mit Anwendungen Auf Die Determinantentheorie, Sitzber. Berliner Math. Ges. 22 (1923), 9-20.
  • [23] J. F. Steffensen, On certain inequalities between mean values, and their application to actuarial problems, Skand. Aktuaries 1 (1918), 82-97.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0008-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.