Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We Defie and study a holomorphic functional calculus for a single element In complex and real complete A-pseudoalgebras with unit. As a consequence of the main result we obtain the spectral mapping theorem and existence of the logarithm and the nth root of an algebra element.
Wydawca
Rocznik
Tom
Strony
161--169
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University and Technical University of Koszalin, Department of Civil and Environmental Engineering, mluczak@amu.edu.pl
Bibliografia
- [1] M. Abel, J. Arhippainen, Locally m-pseudoconvex topologies on locally A-pseudoconvex algebras, Czechoslovak Math. J. 54(3) (2004), 675-680.
- [2] M. Abel, O. Panova, Real Gel’fand–Mazur division algebras, Int. J. Math. Math. Sci. 40 (2003), 2541-2552.
- [3] V. K. Balachandran, Topological Algebras, North-Holland, Amsterdam 2000.
- [4] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York 1973.
- [5] A. C. Cochran, R. Keown, C. R. Williams, On a class of topological algebras, Pacific J. Math. 34(1) (1970), 17-25.
- [6] S. H. Kulkarni, B. V. Limaye, Spectral mapping theorem for real Banach algebras, Houston J. Math., Vol. 7, No. 4 (1981), 507-517.
- [7] S. H. Kulkarni, B. V. Limaye, Real Function Algebras, Marcel Dekker, Inc., New York 1992.
- [8] M. Łuczak, On the Gleason–Kahane–Żelazko theorem, Comment. Math. Prace Mat. 44(2) (2004), 245-253.
- [9] A. Mallios, Topological Algebras. Selected Topics, North-Holland, New York 1986.
- [10] E. Michael, Locally Multiplicatively-Convex Topological Algebras, Mem. Amer. Math. Soc. No. 11 1952.
- [11] L. Oubbi, Topologies m-convexes dans les algèbres A-convexes, Rend. Circ. Mat. Palermo (2) 41 (1992), 397-406.
- [12] M. Oudadess, Unité et semi-normes dans les algèbres localement convexes, Rev. Colomb. Mat., Vol. XVI n. 3-4 (1982), 141-150.
- [13] W. Żelazko, Selected Topics in Topological Algebras, Lecture Notes Ser. No. 31, Math. Inst. of Aarhus University 1971.
- [14] W. Żelazko, A non-m-convex algebra on which operate all entire functions, Ann. Pol. Math. 46 (1985), 389-394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0008-0053