PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A New Density-Based Scheme for Clustering Based on Genetic Algorithm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Density-based clustering can identify arbitrary data shapes and noises. Achieving good clustering performance necessitates regulating the appropriate parameters in the density-based clustering. To select suitable parameters successfully, this study proposes an interactive idea called GADAC to choose suitable parameters and accept the diverse radii for clustering. Adopting the diverse radii is the original idea employed to the density-based clustering, where the radii can be adjusted by the genetic algorithm to cover the clusters more accurately. Experimental results demonstrate that the noise and all clusters in any data shapes can be identified precisely in the proposed scheme. Additionally, the shape covering in the proposed scheme is more accurate than that in DBSCAN.
Słowa kluczowe
Wydawca
Rocznik
Strony
315--331
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
  • Department of Computer Science and Information Engineering, National Chung Cheng Uniersity, Chiayi, Taiwan, 621, R.O.C.
autor
  • Department of Computer Science and Information Engineering, National Chung Cheng Uniersity, Chiayi, Taiwan, 621, R.O.C.
autor
  • Department of Computer Science and Information Management , London Providence, University Taichung, Taiwan 433, R.O.C.
Bibliografia
  • [1] I. Rigoutsos and A. Califano: Searching in Parallel for Similar Strings, IEEE Computational Science and Engineering, vol. 1, pp. 60-75, 1994.
  • [2] A. Joshi, N. Ramakrishman, E. N. Houstis, and J. R. Rice: On Neurobiological, Neuro-Fuzzy, Machine Learning and Statistical Pattern Recognition Techniques, IEEE Transactions on Neural Networks, vol. 8, pp. 18-31, 1997.
  • [3] J. Grabmeier and A. Rudolph: Techniques of Cluster Algorithms in Data Mining, Data Mining and Knowledge Discovery, vol. 6, pp. 303-360, 2002.
  • [4] J. Han and M. Kamber: Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufmann, 2001.
  • [5] J. MacQueen: Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1967.
  • [6] L. Kaufman and P. J. Rousseeuw: Finding Groups in Data: An Introduction to Clustering Analysis, John Wiley & Sons Inc., 1990.
  • [7] M. Ester, H. P. Kregel, J. Sander, and X. Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, U.S.A., 1996.
  • [8] W.Wang, J. Yang, and R. R. Muntz: STING: A Statistical Information Grid Approach to Spatial Data Mining, Proceedings of 23rd International Conference on Very Large Data Bases, Athens, Greece, 1997.
  • [9] J.W. Shavlik and T. G. Dietterich: Readings in Machine Learning, San Mateo, CA: Morgan Kaufmann, 1990.
  • [10] J. H. Holland: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, 1992.
  • [11] D. E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning: Addison-Wesley, 1989.
  • [12] M. Gen and R. Cheng: Genetic Algorithms and Engineering Optimization, John Wiley & Sons, Inc., 2000.
  • [13] P. Mitra, C. A. Murthy, and S. K. Pal: Density-based Multiscale Data Condensation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 734-747, 2002.
  • [14] D. Chaudhuri, C. A. Murthy, and B. B. Chaudhuri: Finding a Subset of Representative Points in a Dataset, IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, pp. 1416-1424, 1994.
  • [15] K. Fukunaga and J. M. Mantock: Nonparametric Data Reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp. 115-118, 1984.
  • [16] L. Xu, A. Krzyzak, and E. Oja: Rival Penalised Competitive Learning for Cluster Analysis, RBF Net and Curve Detection, IEEE Transactions on Neural Networks, vol. 4, pp. 636-649, 1993.
  • [17] Y. Leung, J. S. Zhang, and Z. B. Xu: Clustering by Scale-Space Filtering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1396-1410, 2000.
  • [18] Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, 3ed, Springer Verlag, 1996
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0008-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.