Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article discusses an application of Kullback-Leibler divergence to the recognition of speech signals and suggests three algorithms implementing this divergence criterion: correlation algorithm, spectral algorithm and filter algorithm. Discussion covers an original approach to the problem of speech variability and is illustrated with results of experimental speech signal modeling. The article gives a number of recommendations on the choice of appropriate model parameters and provides a comparison to some other methods of speech recognition.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
303--313
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics and Informatics, Nizhny Novgorod State Linguistic University
autor
- Department of Mathematics and Informatics, Nizhny Novgorod State Linguistic University
Bibliografia
- [1] Rogina, I.: Automatic speech recognition, Carnegie Mellon University, 1998.
- [2] MacKay, D.: Information Theory, Inference, and Learning Algorithms, v.6, Cambridge University Press, 2003.
- [3] Savchenko, V.: Distinguishing of stochastic signals in the frequency domain, Radio engineering and Electronics, 1997, Vol.42, num 4, P. 426-429.
- [4] Kullback, S.: Information theory and statistics, Wiley, New York, 1968.
- [5] Campbell, J. P.: Speaker Recognition: A Tutorial, IEEE Invited Paper, Cambridge University Press, 2000.
- [6] Streaming SIMD Extensions – LU Decomposition, Intel Corporation, 1999.
- [7] William, H., Saul, A.: Numerical recipes in C, Cambridge University Press, 1992.
- [8] Savchenko, V., Akatjev, D.: Estimation of inverse correlation matrix using minimax entropy method, Radio electronics, 1991.
- [9] Marple, S.-L. Jr.: Digital spectral analysis with applications, Prentice Hall, 1987.
- [10] Robinson, T.: Speech Analysis, London, Lent Term, 1995.
- [11] Bocharov, I., Akatjev, D.: The recognition of voice signal according to the method of the whitening filter: Six International Workshop on New Approaches to High-Tech: Nondestructive Testing and Computer Simulations in Science and Engineering The International Society for Optical Engineering, Canada, 2002.
- [12] Potapova, R.: Speech: communication, informatics, cybernetic, Radio and Communication, Moscow, 1997.
- [13] Stylianou, I.: Harmonic plus Noise Models for Speech, combined with Statistical Methods, for Speech and Speaker Modication: PhD thesis, Ecole Nationale Supérieure des T´él´écommunications, 1996.
- [14] Bocharov, I., Akatjev, D.: Voice signal recognition based on the correlation method, Investigated in Russia, Vol. 4, 131/030730, 2003. - P. 1547-1557.
- [15] Bocharov, I., Akatjev, D.: Voice signal recognition based on spectral estimation, Investigated in Russia, Vol. 4, 130/030730, 2003. - P. 1537-1546.
- [16] Bocharov, I., Akatjev, D.: The voice signal recognition based on the method of the whitening filter, Investigated in Russia, Vol. 4, 148, 2003. - P. 1801-1809.
- [17] Hermansky, H., Junqua, J. C.: Optimization of perceptually based ASR front-end, Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing 88, paper S5.10, pp. 219-222.
- [18] Deller, J. R. Jr., Hansen, J. H. L., Proakis, J. G.: Discrete-Time Processing of Speech Signals, IEEE Press, USA, 2000.
- [19] Kazuhito Koishida, Keiichi Tokuday: Efficient encoding of Mel-generalized cepstrum for CELP coders, Tokyo Institute of Technology, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0008-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.