Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biochemical networks are modelled at different abstraction levels. Basically, qualitative and quantitative models can be distinguished, which are typically treated as separate ones. In this paper, we bridge the gap between qualitative and quantitative models and apply time Petri nets for modelling and analysis of molecular biological systems. We demonstrate how to develop quantitative models of biochemical networks in a systematic manner, starting from the underlying qualitative ones. For this purpose we exploit the well-established structural Petri net analysis technique of transition invariants, which may be interpreted as a characterisation of the system's steady state behaviour. For the analysis of the derived quantitative model, given as time Petri net, we present structural techniques to decide the time-dependent realisability of a transition sequence and to calculate its shortest and longest time length. All steps of the demonstrated approach consider systems of integer linear inequalities. The crucial point is the total avoidance of any state space construction. Therefore, the presented technology may be applied also to infinite systems, i.e. unbounded Petri nets.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
149--162
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Department of Computer Science Humboldt University, Berlin, Germany
autor
- Department of Computer Science Brandenburg University of Technology, Cottbus, Germany
autor
- Working Group of Bioinformatics Technical University of Applied Sciences, Berlin, Germany
Bibliografia
- [1] Berthomieu, B., Diaz, M.: Modeling and Verification of Time Dependent Systems Using Time Petri Nets, Advances in Petri Nets 1984, 17, No. 3, 1991.
- [2] Berthomieu, B.,Menasche,M.: An Enumerative Approach for Analyzing Time Petri Nets, Proceedings IFIP (R. E. A. Masom (ed.), Ed.), 17, No. 3, North-Holland, 1983.
- [3] Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed State Space Analysis of Real-Time Preemptive Systems, IEEE Transactions on Software Engineering, 30(2), 2004, 97–111.
- [4] Chen, M., Hofestaedt, R.: Quantitative Petri Net Model of Gene Regulated Metabolic Networks in the Cell, Silico Biol., 0030(3), 2003.
- [5] Genrich, H., K¨uffner, R., Voss, K.: Executable Petri Net Models for the Analysis of Metabolic Pathways, 21th ICATPN 2000, Workshop Proc. Practical Use of High-level Petri Nets, Aarhus, 2000.
- [6] Heiner,M., Koch, I.: Petri Net Based Model Validation in Systems Biology, Proc. 25th ICATPN 2004, LNCS 3099, 2004.
- [7] Heiner, M., Koch, I., Will, J.: Model Validation of Biological Pathways Using Petri Nets - Demonstrated for Apoptosis, Journal BioSystems, 75/1-3, 2004, 15–28.
- [8] Heiner, M., Popova-Zeugmann, L.: Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets, Entwurf komplexer Automatisierungssysteme (E. Schnieder, D. Abel, Eds.), TU Braunschweig, IfRA, 1997.
- [9] Heinrich, R., Rapoport, T. A.: A Linear Steady-state Treatment of Enzymatic Chains: General Properties, Control and Effector Strength. Eur. J. Biochem., 42, 1974, 89–95.
- [10] Junker, B. H.: Sucrose breakdown in the potato tuber, Ph.D. Thesis, Univ. Potsdam, Institute of Biochemistry and Biology, 2004.
- [11] Koch, I., Junker, B. H., Heiner, M.: Application of Petri Net Theory for Model Validation of the Sucrose-tostarch Pathway in Potato Tuber, Bioinformatics, Advance Access, published November 16, 2004.
- [12] Koch, I., Schuster, S., Heiner, M.: Simulation and Analysis of Metabolic Networks Using Time-dependent Petri Nets, Proc. of the German Conference on Bioinformatics (GCB 99), Hannover, 1999.
- [13] Lautenbach, K.: Exakte Bedingungen der Lebendigkeit f¨ur eine Klasse von Petrinetzen, Technical Report 82, GMD, Bonn, 1973.
- [14] Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Biopathways Representation and Simulation on Hybrid Functional Petri Net, Proc. 24th ICATPN, LNCS 2679, 2003.
- [15] Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways Representation and Simulation on Hybrid Functional Petri Net , Silico Biol., 0032(3), 2003.
- [16] Mendes, P.: Biochemistry by Numbers: Simulation of Biochemical Pathway with Gepasi, 3. Trends Biochem. Sci., 22, 1999, 361–363.
- [17] Merlin, P.: A Study of the Recoverability of Communication Protocols, Ph.D. Thesis, University of California, Computer Science Dept., Irvine, 1974.
- [18] Narahari, Y., Suryanarayanan, K., Reddy, N. V. S.: Discrete Event Simulation of Distributed Systems Using Stochastic Petri Nets, Electronics, Computers, Communications, 1989, 622–625.
- [19] Peccoud, J.: Stochastic Petri Nets for Genetic Networks, MS-Medicine Sciences 14, 1998.
- [20] Petri, C. A.: Interpretations of Net Theory , GMD, Interner Bericht, 2nd improved edition, 1976.
- [21] Popova, L.: On Time Petri Nets, J. Inform. Process. Cybern. EIK 27(1991)4, 1991, 227–244.
- [22] Popova-Zeugmann, L., Schlatter, D.: Analyzing Path in Time Petri Nets, Fundamenta Informaticae 37, IOS Press, 1999, 311–327.
- [23] Reddy, V. N., Liebman, M. N., Mavrovouniotis, M. L.: Qualitative Analysis of Biochemical Reaction Systems, Comput. Biol. Med. 26(1), 1996.
- [24] Reddy, V. N., Mavrovouniotis, M. L., Liebman, M. N.: Petri Net Representation in Metabolic Pathways, Proc. First International Conference on Intelligent Systems for Molecular Biology, AAAI,Menlo Park, 1993.
- [25] Schuster, S., Hilgetag, C.: Determining Elementary Modes of Functioning in Biochemical Reaction Networks at Steady State, Proc. Second Gauss Symposium, 1993.
- [26] Tomita, M., Hashimoto, K., Takahashi, K., Shimuzu, T. S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J., Hutchinson, 3rd, C. A.: E-CELL: Software Enironment for Whole-cell Simulation, Bioinformatics 15(1999), 1999.
- [27] Will, J., Heiner, M.: Petri Nets in Biology, Chemistry, and Medicine - Bibliography, Technical Report 04/2002, BTU Cottbus, Computer Science, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0008-0018