PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Procesy oczyszczania nanorurek węglowych

Identyfikatory
Warianty tytułu
EN
Carbon nanotubes purification processes
Języki publikacji
PL
Abstrakty
EN
The discovery of carbon nanotubes (CNTs) and the recognition of their exceptional physical properties have generated a great deal of interest. The possible applications arise from the remarkable properties of CNTs such as the highest Young's modulus, highest thermal conductivity, ballistic electron transport, and high aspect ratio structure. To date, development of nanotube-based products has been delayed by a lack of availability of quantities of pure material and lack of control of their growth. There are many methods for CNTs production: carbon arc, chemical vapour deposition of hydrocarbons, laser ablation or electrolysis in molten salts. Each of these methods leads to the raw product, which contains also by-products: amorphous and turbostratic carbon, carbon nanoonions and encapsulates, catalyst nanoparticles, along with the carbon nanotubes. As mentioned above, high-purity CNTs are required in order to retain excellent intrinsic properties and to proceed with further realistic applications. This review presents not only various routes for CNTs purification, but the aspects of the influence of purification processes on nanotubes properties are also discussed.
Rocznik
Strony
537--555
Opis fizyczny
Bibliogr. 38 poz., fot., wykr.
Twórcy
  • Pracownia Fizykochemii Nanomateriałów, Wydział Chemii, Uniwersytet Warszawski, ul. Pasteura 1, 02-093 Warszawa
autor
  • Pracownia Fizykochemii Nanomateriałów, Wydział Chemii, Uniwersytet Warszawski, ul. Pasteura 1, 02-093 Warszawa
Bibliografia
  • [1] J. Robertson, Materialstoday, 2004, 7(10), 46.
  • [2] A. Huczko, Nanorurki Węglowe. Czarne diamenty XXI wieku, BEL Studio, Warszawa 2004.
  • [3] M. Bystrzejewski, A. Huczko, H. Lange, P. Baranowski, J. Kozubowski, M. Woźniak, M. Leonowicz, W. Kaszuwara, Wiad. Chem., 2004, 58, 163.
  • [4] S. Iijima, Nature, 1991, 354, 56.
  • [5] W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffinann, Nature, 1990, 347, 354.
  • [6] R. Andrews. D. Jacques, D. Qian, E.C. Dickey, Carbon, 2001, 39, 1681.
  • [7] Y.S. Park, Y.C. Choi, K.S. Kim, D.-C. Chung, D.J. Bae, K.H. An, S.C. Lim, X.Y. Zhu, Y.H. Lee. Carbon, 2001, 39, 655.
  • [8] M. Shiraishi, M. Ata, Carbon, 2001, 39, 1913.
  • [9] P.X. Hou, Q.H. Yang, H.M. Cheng, Carbon, 2002, 40, 81.
  • [10] X.H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng, G. Zhang, Z.Z. Chen, Materials Letters, 2002, 57. 734.
  • [11] W. Huang, Y. Wang, G. Luo, F. Wei, Carbon, 2003, 41, 2585.
  • [12] Gy. Onyestyak, J. Valyon, K. Hemadi, I. Kiricsi, L.V.C. Rees, Carbon, 2003, 41, 1241.
  • [13] H. Kuzmanv, Electronic Properties of Novel Materials - Progress in Molecular Nanostructures, A1P Conference Proceedings 442, Melvile, New York, 1998, s. 39.
  • [14] WZ Li, J.G. Wen, M. Senr.et, Z.F. Ren, Chem Phys. Lett., 2003. 368, 299.
  • [15] C V Nguen, L. Deiziet, M. Matthews. B. Chen, M Meyyappan. J. Nanosci Nanotech. 2003.3, 121.
  • [16] X. Bai. D. Li, D.D. Du, H Zhang. L Chen, J Liang, Carbon. 2004. 42. 2'25
  • [17] K. Tohji. G.T. Takahashi. Y. Shinoda. N Shimizu. B Jeyadewan. I Matsuoka, Y Sa.to. A. Kostna. T. Ohsuna, K. Hiraga, Y. Nishina. Nature, 1996. 383. 679.
  • [18] K. Tohji, M. Sugano, A. Kastr.a, Y. N'ishina, Y. Sa:to. H. Takahashi. App! Surf. Sci. 1999. 144-145. 657.
  • [19] Y. Zhang, Z. Shi, Z. Gu, S. lijirna, Carbon, 2000, 38. 2055.
  • [20] P. Umek, A. Hassanien, M. Tokumoto, D. Mihailo\ic. Carbon. 2000. 38, 1723
  • [21] F. Li, H.M. Cheng, Y.T. Xing, P.H. Tan, G. Su. Carbon. 2000. 38. 2041.
  • [22] D. Chattopadhvay, I. Galeska, F. Papadimitrakopoulos, Carbon, 2002, 40. 985.
  • [23] H. Huang, H. Kajiura, A. Yamada. M. Ata, Chem. Phys. Lett., 2002, 356. 56"
  • [24] P. Umek, D. Vrbanic, M. Remskar, T. Mertelj, P. Ventrurini, S. Pejovnik. D Mihailovic. Carbon, 2002, 40, 2581.
  • [25] S. Gajewski, H.-E. Maneck, U. Knoll, D. Neubert, I. Dorfel, R. Mach, B. Strauss. J F Friedrich, Diamond and Related Materials, 2003, 12, 816.
  • [26] K.L. Strong, D.P. Anderson, K. Lafdi. J.N. Kuhn, Carbon. 2003, 41. 1477
  • [27] H. Li, L. Feng, L. Guan, Z. Shi, Z. Gu, Solid State Communications, 2004. 132. 219.
  • [28] T. Zhao, Y. Liu. Carbon, 2004, 42, 2735.
  • [29] H. Kuzmany, Electronic Properties f Sovel Materials - Molecular Sanostructures AIP Conference Proceedings 544, Melvile, New York, 2000, s. 246
  • [30] M. Yudasaka, M. Zhang, S. lijirna. Chem. Phys. Lett., 2003, 374, 132.
  • [31] E. Borowiak-Palen, T. Pichler, X. Liu, M. Knupfer, A. Graff, O. Jost, W. Pompe, R.'. Kalenczuk, J. Fink, Chem. Phys. Lett., 2002, 363, 567.
  • [32] R.J. Kaleńczuk, E. Borowiak-Paleń, Przemysł Chemiczny, 2003, 82(3), 149.
  • [33] M. Zhang, M. Yudasaka, A. Koshio, S. lijirna, Chem. Phys. Lett., 2001, 349, 25.
  • [34] A. Koshio, M. Yudasaka, S. lijirna, Chem. Phy. Lett., 2001, 341, 461.
  • [35] M.T. Martinez, M.A. Callejas, A.M. Benito, M. Cochet, T. Seeger, A. Anson, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, J.L.G. Fierro, W. K. Maser, Carbon, 2003, 41, 2247.
  • [36] M. Monthioux, B. W. Smith, B. Burteaux, A. Clave, J.E. Fischer, D.E. Luzzi. Carbon, 2001. 39. 1251.
  • [37] S. Lebedkin, P. Schweiss, B. Renker, F. Heinrich, M. Neumaier, C. Stoermer, M.M. Kapees, Carbon, 2002, 40, 417.
  • [38] R. Krupke, F. Heinrich, H. Lohnevsen, M.M. Kappes, Science, 2003, 301, 344.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0007-0097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.