PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemia radiacyjna w eksploracji Marsa

Autorzy
Identyfikatory
Warianty tytułu
EN
Radiation chemistry in exploration of Mars
Języki publikacji
PL
Abstrakty
EN
The discussion of chemical reactions caused by ionizing radiation is started, as usual, with the nature of the object which absorbs the energy. First, the composition (CO2 = 95.3%) and density of martian atmosphere is discussed; the latter is low, 120 times smaller than over the Earth atid does not protect the surface of Mars from ionizing radiations. The atmosphere over the Earth secures the shield equivalent to 3 m of concrete, with many positive consequences for the Life on Earth. In addition, high energy protons from the Sun are diverted magnetically around the Earth, and that is not the case around the Mars. The radiolysis of Martian atmosphere starts with formation of CO2 as the primary product of single ionization spurs. The multi-ionization spurs can yield exotic carbon-oxygen compounds, not explored yet. Anyway, the radiolysis of martian atmosphere is completely different from the case of Earth, where the primary product is N* ion-radical. The lack of water vapor over Mars prevents the formation of an analogue to acid rains, and of creation of many other compounds. The most interesting feature of Martian regolith is the possibility of the presence of hydrated minerals, which could have been formed milliards years ago, when (probably) water was present on Mars. Water present in the crystalline lattice undergoes only limited radiolysis, as it is known from the case of concrete, produced as biological shield build on Earth, around the sources of ionizing radiation. Formation of natural hydrated silicates on Mars was possible, therefore survival of traces of H2O on Mars is possible. However, this kind of water cannot be recovered easily, to be used by Mars explorers. The interface of the atmosphere and the regolith is probably the site of many chemical reactions. Very intensive UV, which includes part of the vacuum UV, can cause reduction of carbon dioxide to methane, recently discovered in traces over Mars, hopefully, but erroneously connected, in the mode of wishful thinking, to the Life. Minerals like sodalite, discovered on Mars can contribute as reagents in the mentioned reaction, and could be the source of hydrogen. Conclusions are dedicated to questions of the live organisms connected with exploration of Mars; from microorganisms, comparatively resistant to ionizing radiation, to human beings, considered not to be fit to manned flight, survival on Mars and return to Earth. The genius of Mankind which is able to create effective means of exploration over the distance of millions of kilometers, should be a satisfaction more important than the extremely expensive presence of man or woman on Mars.
Rocznik
Strony
469--488
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Zakład Chemii i Techniki Radiacyjnej, Instytut Chemii i Techniki jądrowej ul. Dorodna 16, 03-195 Warszawa
Bibliografia
  • [1] Z.P. Zagorski, Postępy Techn. Jądrowej, 2003,46, 2,42.
  • [2] C. Zeitlin, T. Cleghorn, F. Cucinotta, P. Saganti, V. Andersen, K. Lee, L. Pinskj, W. Atwell, R. Turner, G. Badhwar, Adv. Space Res., 2004,33, 2204.
  • [3] W. Atwell, P. Sagami, F.A. Cucinotta, C.J. Zeitlin, Adv.Space Res. 2004, 33, 2219.
  • [4] K.T. Lee, T. Cleghorn, F. Cucinotta, L. Pinsky, C. Zeitlin, Adv.Space Res., 2004. 33.2211.
  • [5] Z.P. Zagorski, Postępy Techn. Jądrowej, 2000,43(3), 45.
  • [6] T.F. Cleghorn, P.B. Saganti, C.J. Zeitlin, F.A. Cucinotta, Adv. Space Res., 2004, 33, 2215.
  • [7] T. Owen, The composition and early history of the atmosphere of Mars, [w:] H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Mathews (Eds), Mars, University of Arizona Press, Tucson, AZ, 1992. 818-834.
  • [8] A.C. Schuerger, R.L. Mancinelli, RG. Kem, L.J. Rothschild, Ch.P. McKay, 2003, Icarus, 2003, 165, 253.
  • [9] R. Battaglia, E. Palomba, P. Palumbo, L. Colangeli, V. Della Corte, Adv. Space Res., 33, 2258-2262.
  • [10] H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Icarus, 2003, 165, 9.
  • [11] M.-H. Kim, S.A. Thibeault, J.W. Wilson, L.C. Simonsen, L. Heilbronn, K. Chang, R.L. Kiefert, J.A. Weakley, H.G Maahs, High Perform. Polym., 2000, 12, 13.
  • [12] V.A. Krasnopolsky, P.D. Feldman, Icarus, 2002,160, 8 6.
  • [13] H. Palme, A. Jones, Rozdział 1.03: Solar System Abundances of the Elements, [w:] Treatise on Geochemistry, Vol. 1, Meteorites, Comets and Planets, Elsevier, 2003,41-61.
  • [14] B.C. Clark, Origins Life Evol. Biosph., 2001, 31, 185.
  • [15] Z.P. Zagorski, Wiedza i Życie, 2000, (1), 6.
  • [16] E.Z. Noe Dobrea, J.F. Bell III, M.J. Wolff, K.D. Gordon, Icarus. 2003,166, 1.
  • [17] S.W Ruff, Icarus. 2004, 168, 131.
  • [18] D.L. Bish, J.W. Carey, D.T. Vaniman, S.J. Chipera, Icarus, 2003, 164, 96.
  • [19] D.C. Catling, J.M. Moore, Icarus, 2003, 165, 277.
  • [20] Z.P. Zagórski, Wiad. Chem., 2001, 55, 965.
  • [21] Z.P. Zagórski, 2003, Radiat. Phys. Chem., 2003, 6 6, 329.
  • [22] S.N. Raymond, T. Quinn, J.I. Lunine, Icarus, 2004,168, 1.
  • [23] R Lathe, Icarus, 2004, 168, 18.
  • [24] M. Tehei, B. Franzetti, M.-C. Maurel, J. Vergne, Hountondji, G. Zaccai, Extremophiles, 2002, 6, 427.
  • [25] Z.P. Zagórski, INCT Annual Report, 2001, 39.
  • [26] W. Głuszewski, Z.P. Zagórski, Radioanal. Nuci. Chem., w druku.
  • [27] A.L. Albee, Świat Nauki, 2003, nr. 7,30.
  • [28] A.G. Fairen, Icarus 2004,168, 277.
  • [29] G.R. Dey, A.D. Belapurkar, K. Kishore, J. Photochem. Photobiol. A: Chemistry, 2004,163,503.
  • [30] M.E. Kress, C.P. McKay, Icarus, 2004,168,475.
  • [31] A.S. Wong, S.K. Atreya, V. Formisano, Th. Encrenaz, N.I. Ignatiev, Adv. Space Res., 2004, 33, 2236.
  • [32] K. Venkatesvaran, M. Satomi, S. Chung, R. Kem, R. Koukol, C. Basic, D. White, System Appl. Microbiol., 2001, 24, 311.
  • [33] J.D. Rummel, Proc. Natl. Acad. Sci., 2001, 98, 2128.
  • [34] G. Homeck, Origins Life Evol. Biosph., 1993, 23, 37.
  • [35] G. Homeck, H. Bucker, G. Reitz, Adv. Space Res., 1994, 14, 41.
  • [36] G. Homeck, P. Rettberg, G. Reitz, J. Wehner, TJ. Eschweiler, K. Strauch, C, Panitz, V. Starke, C. Baumstark-Khan, Origins Life Evol. Biosph., 2001, 31, 527.
  • [37] Z.P. Zagórski, W. Głuszewski, INCT Annual Report, 2003, publikowane 2004, 40.
  • [38] M. Cabane, P. Coll, C. Szopa, G. Israel, F. Raulin, R. Sternberg, P. Mahaffy, A. Person, C. Rodier. R. Navarro-Gonzalez, H. Niemann, D. Harpold, W. Brinckerhoff, Adv. Space Res. 2004, 33,2240.
  • [39] G. Easterbrook, Red scare, „The New Republic”, Feb. 2, 2004.
  • [40] J.F. Weiss, M.R. Landauer, Toxicology, 2003,189, I.
  • [41] A.R. Kennedy, J.H. Ware, J. Guan, J.J. Donauhue, J.E.B. Iaglow, Z. Zhou, J. Stewart, M. Wazquez. X.S. Wan, Free Radical Biol. Med., 2004, 36,259.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0007-0094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.