Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with regularity properties of potentials of Radon measures u in IR^n, expressed in terms of some fractal quantities of u (Theorem 1). Based on these assertions, first eigenvalues and eigenfunctions of some fractal elliptic operators are considered (Theorems 2 and 3). The results are illustrated by examples.
Wydawca
Rocznik
Strony
257--283
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Mathematisches Institut, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, D-07740 Jena, Germany, triebel@minet.uni-jena.de
Bibliografia
- [1] M. Bricchi, Tailored Besov spaces and h-sets, Math. Nachr. (to appear).
- [2] M. Bricchi, Complements and results on h-sets, In: Function Spaces, Differential Operators and Nonlinear Analysis, Birkhäuser, Basel, 2003, 219-229.
- [3] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996.
- [4] P. Malliavin, Integration and Probability, Springer, New York, 1995.
- [5] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995.
- [6] S. Moura, Function Spaces of Generalised Smoothness, Dissertationes Math. 398 (2001).
- [7] R. S. Strichartz, Self-similar measures and their Fourier transforms III, Indiana Univ. Math. Journ. 42 (1993), 367-411.
- [8] R. S. Strichartz, Self-similarity in harmonic analysis, Journ. Fourier Anal. Appl. 1 (1994), 1-37.
- [9] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978, [Sec. ed. Barth, Heidelberg, 1995].
- [10] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
- [11] H. Triebel, Theory of Function Spaces, II, Birkhäuser, Basel, 1992.
- [12] H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997.
- [13] H. Triebel, The Structure of Functions, Birkhäuser, 2001.
- [14] H. Triebel, Fractal characteristics of measures; an approach via function spaces, Journ. Fourier Anal. Appl. 9 (2003), 411-430.
- [15] H. Triebel, Wavelet frames for distributions; local and pointwise regularity, Studia Math. 154 (2003), 59-88.
- [16] H. Triebel, Approximation numbers in function spaces and the distribution of eigenvalues of some fractal elliptic operators, (submitted).
- [17] M. Zähle, Harmonic calculus on fractals - a measure geometric approach II, Preprint, Jena, 2002.
- [18] M. Zähle, Riesz potentials and Liouville operators on fractals, Potential Anal. (to appear).
Uwagi
Dedicated to Professor Musielak on the occasion of his 75th birthday.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0007-0062