PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The regularity of measures and related properties of eigenfunctions and first eigenvalues of some fractal elliptic operators

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with regularity properties of potentials of Radon measures u in IR^n, expressed in terms of some fractal quantities of u (Theorem 1). Based on these assertions, first eigenvalues and eigenfunctions of some fractal elliptic operators are considered (Theorems 2 and 3). The results are illustrated by examples.
Twórcy
autor
  • Mathematisches Institut, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, D-07740 Jena, Germany, triebel@minet.uni-jena.de
Bibliografia
  • [1] M. Bricchi, Tailored Besov spaces and h-sets, Math. Nachr. (to appear).
  • [2] M. Bricchi, Complements and results on h-sets, In: Function Spaces, Differential Operators and Nonlinear Analysis, Birkhäuser, Basel, 2003, 219-229.
  • [3] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996.
  • [4] P. Malliavin, Integration and Probability, Springer, New York, 1995.
  • [5] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995.
  • [6] S. Moura, Function Spaces of Generalised Smoothness, Dissertationes Math. 398 (2001).
  • [7] R. S. Strichartz, Self-similar measures and their Fourier transforms III, Indiana Univ. Math. Journ. 42 (1993), 367-411.
  • [8] R. S. Strichartz, Self-similarity in harmonic analysis, Journ. Fourier Anal. Appl. 1 (1994), 1-37.
  • [9] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978, [Sec. ed. Barth, Heidelberg, 1995].
  • [10] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
  • [11] H. Triebel, Theory of Function Spaces, II, Birkhäuser, Basel, 1992.
  • [12] H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997.
  • [13] H. Triebel, The Structure of Functions, Birkhäuser, 2001.
  • [14] H. Triebel, Fractal characteristics of measures; an approach via function spaces, Journ. Fourier Anal. Appl. 9 (2003), 411-430.
  • [15] H. Triebel, Wavelet frames for distributions; local and pointwise regularity, Studia Math. 154 (2003), 59-88.
  • [16] H. Triebel, Approximation numbers in function spaces and the distribution of eigenvalues of some fractal elliptic operators, (submitted).
  • [17] M. Zähle, Harmonic calculus on fractals - a measure geometric approach II, Preprint, Jena, 2002.
  • [18] M. Zähle, Riesz potentials and Liouville operators on fractals, Potential Anal. (to appear).
Uwagi
Dedicated to Professor Musielak on the occasion of his 75th birthday.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0007-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.