Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We proved two structure theorems on BCK. In this paper we prove a basic structure theorem on BCI.
Wydawca
Rocznik
Strony
97--103
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
autor
- 14-6, Kitamachi, Sakuragaoka, Takatuki, Osaka, 569-0817, Japan, kiseki@mb.neweb.ne.jp
Bibliografia
- [1] M. Abe and K. Iseki, A survey on BCK and BCI algebras, Congresso de Logica Aplicada a Tecnologia, LAPTEC 2000, 431-443.
- [2] W. J. Blok and D. Pigozzi, Algebraizable logics, Memoirs of AMS, 396, 1989.
- [3] K. Iseki, On BCI-algebras, Math. Sem. Notes, Kobe University 8 (1980), 125-130.
- [4] K. Iseki, On BCI-algebras with condition (S), Math. Sem. Notes, Kobe University 8 (1980), 171-172.
- [5] K. Iseki, On the existence of quasi-commutative BCI-algebras, Math. Sem. Notes, Kobe University 8 (1980), 181-186.
- [6] K. Iseki, A way to BCK and related systems, Math. Japonica 52 (2000), 163-179.
- [7] K. Iseki, Some fundamental theorems on BCK, Words, Semi-groups, & Transductions, Festschrift in Honor of Gabriel Thierrin, World Sci. (2001), 231-238.
- [8] K. Iseki, On an algebra obtained from BCI, Math. Japonica 57 (2003), 67-69.
- [9] Y. Komori, The class of BCC-algebras is not a variety, Math. Japonica 29 (1984), 391-394.
- [10] J. Meng, Y. B. Jun and E. H. Roh, BCI-algebras of order 6, Math. Japonica 47 (1998), 33-43.
- [11] Yu. Movsisyan, Hyperidentities and hypervarieties, Math. Japonica 54 (2001), 595-640.
- [12] J. G. Raftery and C. J. van Alten, Residuation in commutative ordered monoids with minimal zero.
- [13] A. Ursini, On subtractive varieties, I, Algebra Univers. 31 (1994), 204-222.
- [14] A. Wronski, BCK-algebras do not form a varity, Math. Japonica 28 (1983), 211-213.
Uwagi
To Professor Julian Musielak on the occasion of his 75th birthday.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0007-0051