PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fischer-Muszély additivity on Abelian groups

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A description of a general solution f : X -> Y mapping a commutative group (X, +) into a real normed linear space (Y, || o ||) of the functional equation [formula] is given in terms of isometrics and additive mappings. Several results describing the solutions of this equation that were obtained earlier under some alternative assumptions regarding the domains, ranges and//or by imposing some regularity upon the map f become special cases of our main result. To gain a proper proof tool we have also established an improvement of E. Berz's [4] representation theorem for sublinear functionals on Abelian groups.
Twórcy
autor
  • Instytut Matematyki, Uniwersytet Śląski, ul. Bankowa 14, 40-007 Katowice, Poland, romanger@us.edu.pl
Bibliografia
  • [1] J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge, 1989.
  • [2] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655-658.
  • [3] G. Berruti and F. Skof, Risultati di equivalenza per un’equazione di Cauchy alternativa negli spazi normati, Atti Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 125 (1991), 154-167.
  • [4] E. Berz, Sublinear functions on R, Aequationes Math. 12 (1975), 200-206.
  • [5] J. Dhombres, Some aspects of functional equations, Chulalongkorn Univ., Bangkok, 1979.
  • [6] P. Fischer, Remarque 5 - Probleme 23, Aequationes Math. 1 (1968), 300.
  • [7] P. Fischer and G. Muszély, On some new generalizations of the functional equation of Cauchy,, Canad. Math. Bull. 10 (1967), 197-205.
  • [8] R. Ger, On a characterization of strictly convex spaces, Atti Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 127 (1993), 131-138.
  • [9] R. Ger, A Pexider-type equation in normed, linear spaces, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 206 (1998), 291-303.
  • [10] R. Ger, Fischer-Muszély additivity of mappings between normed spaces, The First Katowice-Debrecen Winter Seminar on Functional Equations, Report of Meeting, Ann. Math. Sil. 15 (2001), 89-90.
  • [11] R. Ger and B. Koclęga, Isometries and a generalized Cauchy equation, Aequationes Math. 60 (2000), 72-79.
  • [12] P. Kranz, Additive functionals on abelian semigroups, Comment. Math. Prace Mat. 16 (1972), 239-246.
  • [13] M. Kuczma, An introduction to the theory of functional equations and inequalities, Polish Scientific Publishers & Silesian University, Warszawa-Kraków-Katowice, 1985.
  • [14] P. Schöpf, Solutions of || f(ξ + η) || = || f (ξ) + f(η) ||, Math. Pannon. 8 (1997), 117-127.
  • [15] F. Skof, On the functional equation || f (x + y) - f (x) || = || f (y) ||„ Atti Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 127 (1993), 229-237.
  • [16] J. Tabor, Jr., Stability of the Fischer-Muszély functional equation, Publ. Math. Debrecen 62 (2003), 205-211.
  • [17] J. Tabor, Jr., Isometries from R to a Banach space, (manuscript).
Uwagi
Dedicated to Professor Julian Musielak on his 75th birthday.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0007-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.