PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

R. Thomas' Modeling of Biological Regulatory Networks : Introduction of Singular States in the Qualitative Dynamics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the field of biological regulation, models extracted from experimental works are usually complex networks comprising intertwined feedback circuits. The overall behavior is difficult to grasp and the development of formal methods is needed in order to model and simulate biological regulatory networks. To model the behavior of such systems, R. Thomas and coworkers developed a qualitative approach in which the dynamics is described by a state transition system. Even if all steady states of the system can be detected in this formalism, some of them, the singular ones, are not formally included in the transition system. Consequently, temporal properties in which singular states have to be described, cannot be checked against the transition system. However, steady singular states play an essential role in the dynamics since they can induce homeostasis or multistationnarity and sometimes are associated to biological phenotypes. These observations motivated our interest for developing an extension of Thomas formalism in which all singular states are represented, allowing us to check temporal properties concerning singular states. We easily demonstrate in our formalism the previously demonstrated theorems giving the conditions for the steadiness of singular states. We also prove that our formalism is coherent with the Thomas one since all paths of the Thomas transition system are preserved in our one, which in addition includes singular states.
Wydawca
Rocznik
Strony
373--392
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • LaMI, umr 8042 CNRS - University of Evry Boulevard Francois Mitterrand, 91025 Evry, France
autor
  • LaMI, umr 8042 CNRS - University of Evry Boulevard Francois Mitterrand, 91025 Evry, France
autor
  • LaMI, umr 8042 CNRS - University of Evry Boulevard Francois Mitterrand, 91025 Evry, France
Bibliografia
  • [1] Bassano, V., Bernot, G.: Marked Regulatory Graphs: A formal framework to simulate Biological Regulatory Networks with simple automata, Proc. of the 14th IEEE International Workshop on Rapid System Prototyping, RSP 2003, San Diego, California, USA, June 9-11 2003.
  • [2] Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic, J. Theor. Biol., 229(3), 2004, 339–347.
  • [3] Chen, K., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., Tyson, J.: Kinetic analysis of a molecular model of the budding yeast cell cycle., Mol. Biol. Cell., 11(1), 2000, 369–391.
  • [4] Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An Open Source Tool for Symbolic Model Checking, Proceeding of International Conference on Computer-Aided Verification (CAV 2002), Copenhagen, Denmark, July 27-31 2002.
  • [5] Filippov, A.: Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, 1988.
  • [6] Gouzé, J.: Positive and negative circuits in dynamical systems, J. Biol. Syst., 6, 1998, 11–15.
  • [7] Guespin-Michel, J., Kaufman, M.: Positive feedback circuits and adaptive regulations in bacteria., Acta Biotheor., 49(4), 2001, 207–18.
  • [8] Hasty, J., McMillen, D., Collins, J.: Engineered gene circuits., Nature, 420(6912), 2002, 224–230.
  • [9] Huang, S.: Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation., Pharmacogenomics., 2(3), 2001, 203–222.
  • [10] Kitano, H.: Computational systems biology., Nature, 420(6912), 2002, 206–210.
  • [11] Kitano, H.: Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology., Curr. Genet., 41(1), 2002, 1–10.
  • [12] Kitano, H.: Systems biology: a brief overview., Science, 295(5560), 2002, 1662–1664.
  • [13] McCaw, M., Lykken, G., Singh, P., Yahr, T.: ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon, Mol. Microbiol., 46(4), 2002, 1123–1133.
  • [14] Plathe, E., Mestl, T., Omholt, S.: Feedback loops, stability and multistationarity in dynamical systems, J. Biol. Syst., 3, 1995, 409–413.
  • [15] Richard, A., Comet, J.-P., Bernot, G.: Qualitative Modelisation of Biological Regulatory Networks, http://smbionet.lami.univ-evry.fr/.
  • [16] Snoussi, E.: Qualitative dynamics of a piecewise-linear differential equations : a discrete mapping approach, Dynamics and stability of Systems, 4, 1989, 189–207.
  • [17] Snoussi, E.: Necessary conditions for multistationarity and stable periodicity, J. Biol. Syst., 6, 1998, 3–9.
  • [18] Snoussi, E., Thomas, R.: Logical identification of all steady states : the concept of feedback loop characteristic states, Bull. Math. Biol., 55(5), 1993, 973–991.
  • [19] Soulé, C.: Graphic requirements for multistationarity, ComplexUs, 1(3), 2003, 123–133.
  • [20] Sveiczer, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J., Novak, B.: Modeling the fission yeast cell cycle: quantized cycle times in wee1-cdc25_ mutant cells., Proc. Natl. Acad. Sci. U S A., 97(14), 2000, 7865–7870.
  • [21] Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks - II. Immunity control in bacteriophage lambda., Bull. Math. Biol., 57(2), 1995, 277–297.
  • [22] Thieffry, D., Thomas, R.: Qualitative analysis of gene networks., Proceedings of the Pac. Symp. Biocomput., 1998.
  • [23] Thomas, R.: Regulatory Networks Seen as Asynchronous Automata : A logical Description, J. theor. Biol., 153, 1991, 1–23.
  • [24] Thomas, R., d’Ari, R.: Biological Feedback, CRC Press, 1990.
  • [25] Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. I. & II., Chaos, 11, 2001, 170–195.
  • [26] Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior, Chaos, 11, 2001, 170–179.
  • [27] Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits, Chaos, 11, 2001, 180–195.
  • [28] Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks - I. Biological role of feedback loops an practical use of the concept of the loop-characteristic state., Bull. Math. Biol., 57(2), 1995, 247–276.
  • [29] Tyson, J., Chen, K., Novak, B.: Network dynamics and cell physiology., Nat. Rev. Mol. Cell. Biol., 2(12), 2001, 908–916.
  • [30] Tyson, J., Csikasz-Nagy, A., Novak, B.: The dynamics of cell cycle regulation., Bioessays, 24(12), 2002, 1095–1109.
  • [31] Tyson, J., Novak, B.: Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions., J. Theor. Biol., 210(2), 2001, 249–263.
  • [32] Wolkenhauer, O.: Systems biology: the reincarnation of systems theory applied in biology?, Brief Bioinform., 2(3), 2001, 258–270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0007-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.