PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Określenie struktury skorupy ziemskiej na podstawie sejsmicznej funkcji odbioru

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Crustal structure from seismic receiver function
Języki publikacji
PL
Abstrakty
EN
During a earthquake some energy is released as seismic waves. Seismograms, recordings of ground velocity deplacement, can be received even for very far earthquakes thanks to present sensitive seismometers. These recordings contain the information about a source, astructure of the earth interior on a ray-path and also about a structure beneath a seismic station. A receiver function is calculated from the seismograms of far events (epicentral distances 30°-90°) recorded by three-component seismic station, mainly by broad-band one. Deconvolving the vertical component of teleseismic P waves (P) from the horizontal one (radial or tangential) we can move out the instrument impulse response, effective source time function and the ray-path effects in the mantle from the seismograms. The receiver function contains only P-to-S converted phases (except the direct P wave) from the seismic discontinuities beneath the station. We can apply to the receiver function the inversion method or forward modelling to investigate the one-dimensional S-wave velocity structure beneath the station. Analysis of the receiver functions of the seismic stations for a passive seismic experiment TOR from Sweden, Denmark and Germany and for permanent stations : Suwałki (SUW) from north-east Poland, Moxa (MOX) from south-east Germany, Pruhonice (PRU) as well as Dobruska/Polom (DPC) and Moravsky Beroun (MORC) from central and north-east Czech shows the big differences of the tectonic structure in these areas. I have applied to calculated receiver functions one-dimensional time-domain linear inversion method (TOR experiment, SUW), three-dimensional trial-and-error forward modelling (MOX) and simultaneous determination of Moho depth and average Poisson's ratio in the crust (PRU, DPC
Rocznik
Tom
Strony
31--45
Opis fizyczny
tab., wykr., bibliogr. 27 poz.
Twórcy
  • Instytut Geofizyki UW
Bibliografia
  • [1] Ammon C. J., Randall G. E., Zandt G., 1990. On the nonuniqueness of receiver function inversion. J. Geophys. Res., 95, 15303-15318.
  • [2] Cassidy J. F., 1992. Numerical experiments in broadband receiver function analysis. Bull. Seism. Soc. Am., 82, 1453-1474.
  • [3] Clayton R. W., Wiggins R. A., 1976. Source shape estimation and deconvolution of teleseismic body-waves. Geophys. J. R. Astron. Soc., 47, 151-177.
  • [4] Farra V., Vinnik L., 2000. Upper mantle stratification by P and S receiver functions. Geophys. J. Int., 141, 699-712.
  • [5] Frederiksen A. W., Fo1som H., Zandt G., 2003. Neighbourhood inversion of teleseismic Ps conversions for anisotropy and layer dip. Geophys. J. Int., 155, 200-212.
  • [6] Gregersen S., Pedersen L. B., Roberts R. G., Shomali H., Berthelsen A., Thybo H.,Mosegaard K., Pedersen T., Voss P., Kind R., Bock G., Gossler J., Wylegalla K., Rabbel W., Woelbern I., Budweg M., Busche H., Korn M., Hock S., Guterch A., Grad M., Wilde-Piórko M., Zuchniak M, Plomerova J., Ansorge J., Kissling E., Arlitt R., Waldhauser F., Ziegler P., Achauer U., Pedersern H., Cotte N., Paulssen H., Engdahl E. R, 1999. Important Findings Expected From Europe’s Largest Seismic Array. EOS Trans. AGU, 80, 1, 6.
  • [7] Julia J., Ammon C. J., Herrmann R. G., 2003. Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities. Tectonophysics, 371, 1-21.
  • [8] Kennett B. L. N., Engdahl E. R., 1991. Traveltimes for global earthquakes location and phase identification. Geophys. J. Int., 105, 429-465.
  • [9] Kind R., Kosarev G. L., Petersen N. V., 1995. Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophys. J. Int., 121, 191-202.
  • [10] Kosarev G., Kind R., Sobolev S. V., Yuan X., Hanka W., Oreshin S., 1999. Seismic Evidence for a Detached Indian Lithospheric Mantle Beneath Tibet. Science, 283, 1306-1309.
  • [11] Kumar M. R., Saul J., Sarkar D., Kind R., Shukla A. K., 2001. Crustal structure of the Indian Shield: New constraints from teleseismic receiver functions. Geophys. Res. Lett., 28, 1339-1342.
  • [12] Langston C. A., 1977. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bull. Seism. Soc. Am., 67, 1029-1050.
  • [13] Langston C. A., 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res., 84, 4749-4762.
  • [14] Mangino S., Priestley K., Ebel J., 1999. The Receiver Structure beneath the China Digital Seismograph Network Stations. Bull. Seism. Soc. Am., 89, 1053-1076.
  • [15] Müller G., 1985. The reflectivity method: a tutorial. J. Geophys., 58, 153-174.
  • [16] Owens T. J., Zandt G., Taylor S. R., 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: a detailed analysis of broadband teleseismic P waveforms. J. Geophys. Res., 89, 7783-7795.
  • [17] Poppeliers C., Pavlis G. L., 2003. Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: I. Theory. Journal of Geophysical Research — Solid Earth, 108 (B2), art. no 2112.
  • [18] Reading A., Kennett B., Sambridge M., 2003. Improved inversion for seismic structure using transformed, S-wavevector receiver functions: Removing the effect of the free surface. Geophys. Res. Lett., 30, art. no. 1981.
  • [19] Saul J., 1997. InvRF: A package for the computation and inversion of teleseismic receiver function, vers. 1.2.3. Institute of Geophysics, University of Hamburg, Germany.
  • [20] Wessel P., Smith H. F., 1995. New version of Generic Mapping Tools released. EOS Transactions, American Geophysical Union, 76, 329.
  • [21] Wilde-Piórko M., 1997. Sejsmiczna struktura skorupy ziemskiej na podstawie funkcji odbioru stacji Suwałki. Praca magisterska, Uniwersytet Warszawski, Warszawa.
  • [22] Wilde-Piórko M., Grad M., POLONAISE Working Group, 1999. Regional and teleseismic events recorded across the TESZ during POLONAISE’97. Tectonophysics, 314, 161-174.
  • [23] Wilde-Piórko M., 2002. Modelling of seismic structure of the crust and upper mantle from receiver function. Praca doktorska, Uniwersytet Warszawski, Warszawa.
  • [24] Wilde-Piórko M., Grad M., TOR Working Group, 2002. Crustal structure variation from the Precambrian to Palaeozoic platforms in Europe imaged by the inversion of teleseismic receiver functions — project TOR. Geophys. J. Int., 150, 261-270.
  • [25] Wilde-Piórko M., Saul J., Grad M., 2005. Differences in the crustal and uppermost mantle structure of the Bohemian Massif from teleseismic receiver functions. Studia Geophysica et Geodaetica, 49, 85-107.
  • [26] Zhu L., Kanamori H., 2000. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res., 105, 2969-2980.
  • [27] Zhu L., Owens T. J., Randall G. E., 1995. Lateral Variation in Crustal Structure of the Northern Tibetan Plateau Inferred from Teleseismic Receiver Function. Bull. Seism. Soc. Am., 85, 1531-1540.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0006-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.