PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Relationship Between Monadic and Weak Monadic Second Order Logic on Arbitrary Trees, with Applications to the mu-Calculus

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1970, in Weakly definable relations and special automata, Math. Log. and Found. of Set Theory, pp 1-23, Rabin shows that a language is recognizable by a tree automaton with Büchi like infinitary condition if and only if it is definable as the projection of a weakly definable language. In this paper, we refine this result characterizing such languages as those definable in the monadic Σ2 level of the quantifier alternation depth hierarchy of monadic second order logic (MSO). This new result also contributes to a better understanding of the relationship between the quantifier alternation depth of hierarchy of MSO and the fixpoint alternation depth hierarchy of the mu-calculus: it shows that the bisimulation invariant fragment of the monadic Σ2 level equals the νμ-level of the mu-calculus hierarchy.
Wydawca
Rocznik
Strony
247--265
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • LaBRI, Universite Bordeaux I, 351 cours de la Liberation, F-33405 Talence cedex, France
autor
  • Dipartimento di Matematica Università di Pisa via iiuonarroti 2, 1-5612 7 Pisa, Italy
Bibliografia
  • [1] Arnold, A.: The mu-calculus alternation-depth hierarchy over the binary tree is strict. Theoretical Informatics and Applications, 33, 1999, 329-339.
  • [2] Arnold, A., Niwiński, D.: Rudiments of mu-calculus. Studies in Logic and the Foundations of Mathematics vol. 146, North-Holland, 2001.
  • [3] Bradfield, J.: The modal mu-calculus alternation hierarchy is strict. Theoretical Comp. Science, 195, 1998, 133-153.
  • [4] Büchi, J. R.: On a decision method in restricted second order arithmetic. Proceedings of the international congress on Logic, Methodology and Philosophy of Science I960, Stanford University Press, 1962,1-11.
  • [5] Courcelle, B.: The Monadic Second Order Logic Of Graph I: Recognizable sets of finite graphs. Inf. And Comp.,85, 1990,12-75.
  • [6] Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic, Undergraduate Texts in Mathematics, Springer-verlag, 1984.
  • [7] Emerson, E.: Temporal and modal logic, in: Handbook of Theor. Comp. Science (vol. B) (J. Van Leeuwen, Ed.), Elsevier, 1990, 995-1072.
  • [8] Gaifman, H.: Modeling Concurrency By Partial Orders and Nonlinear Transition Systems, Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, LNCS 354, 1988.
  • [9] Gradel, E., Thomas, W., Wilke, T, Eds.: Automata, Logics and Infinite Games, LNCS Tutorial 2500, Springer, 2002.
  • [10] Janin, D.: Automata, tableaus and a reduction theorem for fixpoint calculi in arbitrary complete lattices, IEEE Symp. on Logic in Computer Science (LICS), 1997,172-182.
  • [11] Janin, D., Lenzi, G.: Relating Levels of the Mu-calculus Hierarchy and Levels of the Monadic Hierarchy, IEEE Symp. on Logic in Computer Science (LICS), IEEE Computer Society, 2001, 347-356.
  • [12] Janin, D., Lenzi, G.: On the logical definability of topologically closed recognizable languages of infinite trees. Computing and Informatics, 2\,2Q01, 185-203.
  • [13] Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related results. Mathematical Found, of Comp. Science (MFCS), LNCS 969, 1995.
  • [14] Janin, D., Walukiewicz, I.: On the expressive completeness of the modal mu-calculus with respect to monadic second order logic, Conf on Concurrency Theory (CONCUR'96), LNCS 1119, 1996,263-277.
  • [15] Kozen, D.: Results on The Propositional μ-calculus. Theoretical Comp. Science, 27, 1983, 333-354.
  • [16] Kupferman, O., Vardi, M.: II2 n S2 = AFMC, Int. Call, on Aut., Lang, and Programming (ICALP), LNCS 2719,2003,697-713.
  • [17] Lenzi, G.: A new logical characterization of Büchi automata, Symp. on Theor. Aspects of Computer Science (STACS), LNCS 2010, 2001.
  • [18] Milner, R.: Communication and concurrency, Prentice-Hall, 1989.
  • [19] Mostowski, A.: Hierarchies of weak automata on weak monadic formulas. Theoretical Comp. Science, 83, 1991,323-335.
  • [20] Muller, D. E., Saoudi, A., Schupp, P. E.: Alternating automata, the weak monadic theory of trees and its complexity. Theoretical Comp. Science, 97, 1992, 233-244.
  • [21] Muller, D. E., Schupp, P. E.: Alternating automata on infinite trees. Theoretical Comp. Science, 54, 1987, 267-276.
  • [22] Niwiński, D.: Fixed Points vs. Infinite Generation, Proc. 3rd. IEEE LICS, 1988,402-409.
  • [23] Park, D.: Concurrency and automata on infinite sequences, 5th GI Conf. on Theoret. Comput. Sci., LNCS 104, Karlsruhe, 1981, 167-183.
  • [24] Pnueli, A.: The Temporal Logic of Programs, 18th Symposium on Foundations of Computer Science, 1977, 46-57.
  • [25] Rabin, M. O.: Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc, 141, 1969, 1-35.
  • [26] Rabin, M. O.: Weakly definable relations and special automata. Mathematical Logic and Foundation of Set Theory, North Holland, 1970, 1-23.
  • [27] Shoenfield, J. R.: Mathematical Logic, Addison-Wesley, Reading, Mass., 1967.
  • [28] Skurczyński, J.: A characterization of Büchi tree automata. Information Processing Letters, 81,2002,29-33.
  • [29] Thomas, W: Automata on Infinite Objects, in: Handbook of Theor. Comp. Science (vol. B) (J. Van Leeuwen, Ed.), Elsevier, 1990,133-191.
  • [30] Walukiewicz, I.: Monadic second order logic on tree-like structures, Symp. on Theor Aspects of Computer Science (STACS), 1996, LNCS 1046. Full version in Information and Computation 164 (2001) pp. 234-263.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0005-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.