PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytic Calculi for Monoidal T-norm Based Logic

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monoidal t-norm based logic MTL is the logic of left continuous t-norms. We introduce two analytic calculi for first-order MTL. These are obtained by lifting two sequent calculi for different fragments of this logic to the hypersequent level with subsequent addition of Avron's communication rule. Our calculi enable to prove the mid(hyper)sequent theorem. As corollaries follow Herbrand's theorem for first-order MTL, the decidability of its ∀∃-fragment and admissibility of Skolemization.
Wydawca
Rocznik
Strony
315--332
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Institut für Diskrete Mathematik und Geometrie, Research group for Computational Logic, TU Wien, Austria
  • Institut für Diskrete Mathematik und Geometrie, Research group for Computational Logic, TU Wien, Austria
autor
  • Dipartimento di Matematica, University of Siena, Italy
Bibliografia
  • [1] Adillon, R.. Verdú. V.: On a contraction-less Intuitionistic Propositional Logic with Conjunction and fusion, Studia Lógica, 65. 2000, 11-30.
  • [2] Avron, A.: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency, Annals of Mathematics and Artificial Intelligence, 4. 1991. 225-248.
  • [3] Avron, A.: The Method of Hypersequents in the Proof Theory of Propositional Nonclassical Logics, Logic: from Foundations to Applications. European Logic Colloquium. Oxford Science Publications. Clarendon Press. Oxford. 1996.
  • [4] Baaz, M., Ciabattoni, A.: A Schütte-Tait style cut-elimination proof for first-order Gödel logic, in: Automated Reasoning with Tableaux and Related Methods (Tableaux'02), vol. 2381 of LNAI, 2002, 24-38.
  • [5] Baaz, M., Ciabattoni, A., Fermüller, C.: Herbrand’s Theorem for Prenex Gödel Logic and its Consequences for Theorem Proving, in: Logic for Programming, Artificial Intelligence and Reasoning (LPAK'2001 ), vol.2250 of LNAI, 2001,201-216.
  • [6] Baaz, M., Ciabattoni, A., Fermüller, C., Veith. H.: On the Undecidability of Some Sub-classical First-Order Logics, in: Foundations of Software Technology and Theoretical Computer Science (FST&TCS’99), vol. 1738 of LNCS, 1999, 258-268.
  • [7] Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic, in: Computer Science Logic (CSL’2000), vol. 1862 of LNCS, 2000. 187-201.
  • [8] Ciabattoni, A.: On Urquhart's С logic. International Symposium on Multiple Valued Logic (ISMVL'2000), IEEE. 2000.
  • [9] Esteva, F., Godo. L.: QBL: towards a logic for left-continuous t-norms, Proc. of the 1999 Eusflat-Estylf Joint Conference, 1999.
  • [10] Esteva, F., Godo. L.: Monoidal t-norm based Logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems, 3, 2001, 271 -288.
  • [11] Gottwald, S.: A Treatise On Many-Valued Logics, vol. 9 of Studies in Logic and Computation, Research Studies Press, 2001.
  • [12] Hájek. P.: Metamathematics of Fuzzy Logic, Kluwer. 1998.
  • [13] Höhle. U.: Commutative, residuated l-monoids, in: Nonclassical logics and their applications to fuzzy subsets (U. Höhle, P. Klement, Eds.), Kluwer. 1995. 53-106.
  • [14] Jenei. S., Montagna, F.: A proof of standard completeness for Esteva and Godo's logic MTL, Studia Lógica. 70, 2002, 183-192.
  • [15] Klement, E., Mesiar. R., Pap, E.: Triangular Norms. Kluwer, 2002.
  • [16] Montagna, F., Ono. H.: Kripke semantics, undecidability and standard completeness for Esteva and Godo’s Logic MTLV. Studia Lógica, 71, 2002, 227-245.
  • [17] Ono, H.: Semantical analysis of predicate logics without the contraction rule. Studia Lógica. 44, 1985. 187-196.
  • [18] Ono. H.: Personal communication, 2002.
  • [19] Ono. H., Komori. Y.: Logics without the contraction rule, J. of Symbolic Logic, 50. 1985. 169-201.
  • [20] Troelstra. A., Schwichtenberg. H.: Basic Proof Theory, Cambridge University Press, 1996.
  • [21] Urquhart, A.: Basic Many-Valued Logic, in: Handbook of Philosophical Logic (D. Gabbay, F. Guenthner, Eds.), vol. 2, Reidel. Dordrecht, 2001, 249-295.
  • [22] Zadeh, L. A.: Selected Papers by Lotfi A. Zadeh. World Scientific, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0005-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.