Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Information dynamics of cellular automata(CA) is studied using polynomials over finite fields. The information about the uncertainty of cell states is expressed by an indeterminate X called information variable and its dynamics is investigated by extending CA to CA[X] whose cell states are polynomials in X. For the global configuration of extended CA[X], new notions of completeness and degeneracy are defined and their dynamical properties are investigated. A theorem is proved that completeness equals non-degeneracy. With respect to the reversibility, we prove that a CA is reversible, if and only if its extension CA[X] preserves the set of complete configurations. Information dynamics of finite CAs and linear CAs are treated in the separate sections. Decision problems are also referred.
Wydawca
Czasopismo
Rocznik
Tom
Strony
399--420
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Iwakura Miyake-cho 204, Sakyo-ku, Kyoto 606-0022, Japan
autor
- Faculty of Information Science and Technology, Osaka Institute of Technology, Osaka 573-0196, Japan
Bibliografia
- [1] Bergman, C., Slutzki, G.: Computational Complexity of Generators and Nongenerators in Algebra, International Journal of Algebra and Computation, 12, 2002, 719-735.
- [2] D’amico, M., Manzini, G., Margara, L.: On computing the entropy of cellular automata, TCS, 290, 2003, 1629-1646.
- [3] Fisher, P. C.: Generation of primes by one-dimensional iterative array, Journal of the ACM, 12, 1965, 388-394.
- [4] Garzon, M.: Models of Massive Parallelism, Analysis of Cellular Automata and Neural Networks, Springer, 1995.
- [5] Goles, E., Martinez, S., Eds.: Cellular Automata and Complex Systems, Kluwer Academic Publishers, 1999.
- [6] Gruska, J.: Foundations of computing, International Thompson Computer Press, 1997.
- [7] Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theoretical Computer Science, 127, 1994, 229-254.
- [8] Kolmogorov, A. N.: Three approaches to the quantitative definition of information, Problems Inform. Transmission, 1, 1965, 1-7.
- [9] Lidl, R., Niederreiter, H.: Finite Fields, Second edition, Cambridge University Press, 1997.
- [10] Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata, TCS, 217, 1999, 53-80.
- [11] Nishio, H.: Algebraic studies of information in cellular automata, Technical Report 1109, RIMS, Kyoto University, 1999.
- [12] Nishio, H.: An algebraic study of information in cellular automata, Technical Report 2000-22, University of Karlsruhe, 2000, ACRI2000 Work in progress presentation.
- [13] Nishio, H.: Cellular automata with polynomials over finite fields, Proc. 3rd International Colloquium on Words, Languages and Combinatorics (M. Ito, T. Imaoka, Eds.), World Scientific, 2003.
- [14] Nishio, H., Saito, Т.: Information Dynamics of Cellular Automata: Informational Completeness and Reversibility, 2001, Manuscript for 7th IFIP 1.5 Conference, Giens, France.
- [15] Nishio, H., Saito, Т.: Information Dynamics of Cellular Automata II: Completeness, Degeneracy and Entropy, 2002, Manuscript for 8th IFIP 1.5 Conference, Prague, Chech.
- [16] Shannon, C. E.: The mathematical theory of communication. Bell System Technical J, 27, 1948, 379-423, 623-659.
- [17] Smith III, A. R.: Real-time language recognition by one-dimensional cellular automata. Journal of the ACM, 6, 1972, 233-253.
- [18] Takahashi, H.: Information transmission in one-dimensional cellular space and the maximum invariant set, Information and Control, 33, 1977, 35-55.
- [191 von Neumann, J., Burks, A. (ed.): Theory of Self-reproducing Automata, Univ. of Illinois Press. 1966.
- [20] Waksman, A.: An optimal solution to the firing squad synchronization problem. Information and control 8, 1966, 66-78.
- [21] Worsch, Т.: private communication. October 2001.
- [22] Worsch, Т.: slides for talk; http://www.ira.uka.de/ worsch/talks/me tz2002.pdf, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0004-0178