Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present simulation and separation results between multi-dimensional deterministic and alternating cellular automata (CAs). It is shown that for any integers k ł l ł 1, every k-dimensional t(n)-time deterministic CA can be simulated by an l-dimensional O(t(n)[(k-l+1)/( k-l+2)])-time alternating CA. This result is a dimension reduction theorem and also a time reduction theorem: (i) Every multi-dimensional deterministic CA can be simulated by a one-dimensional alternating CA without increasing time complexity. (ii) Every deterministic computation in a multi-dimensional deterministic CA can be sped up quadratically by alternations when the dimension is fixed. Furthermore, it is shown that there is a language which can be accepted by a one-dimensional alternating CA in t(n) time but not by any multi-dimensional deterministic CA in t(n) time.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
261--271
Opis fizyczny
bibliogr. 26 poz.
Twórcy
autor
autor
autor
autor
- Graduate School of Engineering, Higashi-Hiroshima, 739-8527, Japan, chuzo@hiroshima-u.ac.jp
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0004-0172