PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modal Probability, Belief, and Actions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate a modal logic of probability with a unary modal operator expressing that a proposition is more probable than its negation. Such an operator is not closed under conjunction, and its modal logic is therefore non-normal. Within this framework we study the relation of probability with other modal concepts: belief and action. We focus on the evolution of belief, and propose an integration of revision. For that framework we give a regression algorithm.
Wydawca
Rocznik
Strony
323--344
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Institut de Recherche en Informatique de Tuluse, 118 rute de Narbonne, F-31062 Toulouse, Cedex 04, France, herzig@irit.fr
Bibliografia
  • [1] Bacchus, F., Halpern, J., Levesque, H.: Reasoning about noisy sensors in the situation calculus, Proc. 14th Int. Joint Conf. on Artificial Intelligence (IJCAI’95), 1995.
  • [2] Bacchus, F., Halpern, J., Levesque, H.: Reasoning about noisy sensors in the situation calculus, Artificial Intelligence, 111, 1999, 131-169.
  • [3] Baltag, A.: A Logic of Epistemic Actions, Technical report, CWI, 2000, http://www.cwi.nl/~abaltag/papers.htlm.
  • [4] Baltag, A., Moss, L. S., Solecki, S.: The Logic of Public Announcements, Common Knowledge, and Private Suspicions, Proc. TARK’98, Morgan Kaufmann, 1998.
  • [5] Burgess, J. P.: Probability logic, J. of Symbolic Logic, 34, 1969, 264-274.
  • [6] Fariñas del Cerro, L., Herzig, A.: A modal analysis of possibility theory, Proc. European Conf. on Symbolic and Quantitative Approaches to Uncertainty (ECSQAU’91), number 548 in LNCS, Springer Verlag, 1991, (short version; long version published in FAIR’91).
  • [7] Fariñas del Cerro, L., Herzig, A.: A modal analysis of possibility theory (Invited Paper), Proc. of the Int. Workshop on Foundations of AI Research (FAIR 91) (P. Jorrand, J. Kelemen, Eds.), number 535 in LNAI, Springer Verlag, September 1991, (short version published in ECSQAU’91).
  • [8] Chellas, B.: Modal logic: An introduction, Cambridge University Press, 1980.
  • [9] Demolombe, R., Herzig, A., Varzinczak, I.: Regression in modal logic, Journal of Applied Non-Classical Logics, 13(2), 2003, 165-185.
  • [10] Fagin, R., Halpern, J. Y.: Reasoning about knowledge and probability, Journal of the ACM, 41(2), 1994, 340-367.
  • [11] Fattorosi-Barnaba, M., de Caro, F.: Graded modalities I, Studia Logica, 44, 1985, 197-221.
  • [12] Friedman, N., Halpern, J. Y.: Modeling belief in dynamic systems. Part I: foundations, Artificial Intelligence, 95(2), 1997, 257-316.
  • [13] Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States, MIT Press, 1988.
  • [14] Gerbrandy, J.: Dynamic epistemic logic, Technical report, ILLC, Amsterdam, 1997.
  • [15] Gerbrandy, J.: Bisimulations on Planet Kripke, Ph.D. Thesis, University of Amsterdam, 1999.
  • [16] Gerbrandy, J., Groeneveld, W.: Reasoning about information change, J. of Logic, Language and Information, 6(2), 1997.
  • [17] Godo, L., Hajek, P., Esteva, F.: A fuzzy modal logic for belief functions, Proc. 17th Int. Joint Conf. on Artificial Intelligence (IJCAI’01), 2001.
  • [18] Hajek, P.: Metamathematics of fuzzy logic, Kluwer, 1998.
  • [19] Halpern, J., McAllester, D.: Likelihood, probability, and knowledge, Computational Intelligence, 5, 1989, 151-160.
  • [20] Halpern, J., Rabin, M.: A logic to reason about likelihood, Artificial Intelligence J., 32(3), 1987, 379-405.
  • [21] Hamblin, C.: The modal ‘probably’, Mind, 68, 1959, 234-240.
  • [22] Harel, D.: Dynamic Logic, in: Handbook of Philosophical Logic (D. M. Gabbay, F. Günthner, Eds.), vol. II, D. Reidel, Dordrecht, 1984, 497-604.
  • [23] Herzig, A., Lang, J., Longin, D., Polacsek, T.: A logic for planning under partial observability, Proc. Nat. (US) Conf. on Artificial Intelligence (AAAI’2000), Austin, Texas, August 2000.
  • [24] Herzig, A., Lang, J., Polacsek, T.: A modal logic for epistemic tests, Proc. Eur. Conf. on Artificial Intelligence (ECAI’2000), Berlin, August 2000.
  • [25] Herzig, A., Longin, D.: Sensing and revision in a modal logic of belief and action, Proc. ECAI2002 (F. van Harmelen, Ed.), IOS Press, 2002.
  • [26] Herzig, A., Longin, D.: On modal probability and belief, Proc. ECSQARU2003 (N. L. Zhang, T. D. Nielsen, Eds.), 2711, Springer Verlag, 2003.
  • [27] Hintikka, J. K. K.: Knowledge and belief, Cornell University Press, Ithaca, N.Y., 1962.
  • [28] van der Hoek, W.: On the semantics of graded modalities, J. of Applied Non-classical Logics (JANCL), 2(1), 1992.
  • [29] Lenzen, W.: Recent work in epistemic logic, North Holland Publishing Company, Amsterdam, 1978.
  • [30] Lenzen, W.: On the semantics and pragmatics of epistemic attitudes, in: Knowledge and belief in philosophy and AI (A. Laux, H. Wansing, Eds.), Akademie Verlag, Berlin, 1995, 181-197.
  • [31] Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming language for dynamic domains, J. of Logic Programming, 1997, Special issue on reasoning about action and change.
  • [32] Lewis, D.: Counterfactuals, Basil Blackwell, Oxford, 1973.
  • [33] Moore, R. C.: A formal theory of knowledge and action, in: Formal Theories of the Commonsense World (J. Hobbs, R. Moore, Eds.), Ablex, Norwood, NJ, 1985, 319-358.
  • [34] Reiter, R.: The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression, in: Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy (V. Lifschitz, Ed.), Academic Press, San Diego, CA, 1991, 359-380.
  • [35] Scherl, R., Levesque, H. J.: The frame problem and knowledge producing actions, Proc. Nat. Conf. on AI (AAAI’93), AAAI Press, 1993.
  • [36] Schmidt, R. A., Tishkovsky, D.: Multi-Agent Logic of Dynamic Belief and Knowledge, Proc. 8th Eur. Conf. on Logics in AI (JELIA) (S. Flesca, S. Greco, N. Leone, G. Ianni, Eds.), 2424, Springer, 2002, http://cs.man.cu.uk./~schmidt/publications/SchmidtTishkovsky02c.html%
  • [37] Schmidt, R. A., Tishkovsky, D.: Combining Dynamic Logic with Doxastic Modal Logics, Advances in Modal Logic, Volume 4 (P. Balbiani, N.-Y. Suzuki, F. Wolter, M. Zakharyaschev, Eds.), King’s CollegeLondon Publications, 2003, To appear, http://cs.man.cu.uk./~schmidt/publications/SchmidtTishkovsky02c.html%
  • [38] Segerberg, K.: Qualitative probability in a modal setting, Proc. of the 2nd Scandinavian Logic Symp. (J. Fenstad, Ed.), North Holland Publ. Company, Amsterdam, 1971.
  • [39] Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H. J.: Iterated Belief Change in the Situation Calculus, Proc. KR2000, 2000.
  • [40] Walley, P., Fine, T. L.: Varieties of modal (classificatory) and comparative probability, Synthese, 41, 1979, 321-374.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0004-0153
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.