PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Principles and mathematical modeling of biological pattern formation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An overview of principles and mathematical models of biological pattern formation is presented. One can distinguish preformation, optimization, topological and self-organization principles. Combinations of such principles are responsible for shape and tissue formation, differentia-tion, regeneration, morphogenetic motion, celi division and even malignant patterns, e.g. in tumor growth. Mathematical modeling allows for a system-atic analysis of the pattern-formation potential of morphogenetic principles. Biological patterns are the result of complex interactions between a smaller or larger number of components, particularly molecules and cells. Depend-ing on the modeling perspective microscopic (from the individual compo-nent level) and macroscopic models (from the population perspective) are distinguished. The specific question directs the choice of the appropriate perspective. A selection of microscopic and macroscopic model types is in-troduced.
Rocznik
Tom
Strony
16--38
Opis fizyczny
Bibliogr. 80 poz., rys., tab.
Twórcy
autor
  • Center for High Performance Computing (ZHR), Dresden University of Technology, D-01062 Dresden, Germany
autor
  • Inst. of Environmental, Systems Research, University of Osnabrück, D-49069 Osnabrück, Germany
Bibliografia
  • [1] P. Baldi and S. Brunak, Bioinformatics. The Machine Learning Approach, MIT Press, Cambridge, Mass., 1998.
  • [2] J. B. L. Bard, Morphogenesis: the Cellular and Molecular Processes of Developmental Anatomy, Cambridge Univ. Press, Cambridge, 1990.
  • [3] E. Ben-Jacob, O. Shochet, A. Tenenbaum, I. Cohen, A. Czirók, and T. Vicsek, Generic modelling of cooperative growth patterns in bacterial colonies, Nature 368 (1994), 46-49.
  • [4] U. Börner, A. Deutsch, H. Reichenbach, and M. Bär, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions, to appear in Phys. Rev. Lett., 2002.
  • [5] T. Boveri, Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung: Zugleich ein Beitrag zur Frage qualitativ ungleicher Chromosomenteilung, Festschr. R. Hertwig, Jena III, 1910, 133-214.
  • [6] P. J. Bowler, The changing meaning of evolution, J. Hist. Ideas 36 (1975), 95-114.
  • [7] H. Bussemaker, Pattern formation and correlations in lattice gas automata, PhD thesis, Univ. Utrecht, 1995.
  • [8] H. Bussemaker, A. Deutsch, and E. Geigant, Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion, Phys. Rev. Lett. 78 (1997), 5018-5021.
  • [9] V. Castets, E. Dulos, J. Boissonade, and P. de Kepper, Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern, Phys. Rev. Lett. 64 (1990), 2953.
  • [10] B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge Univ. Press, New York, 1998.
  • [11] G. Civelekoglu and L. Edelstein-Keshet, Modelling the dynamics of F-actin in the cell, J. Math. Biol. 56 (1994), 587-616.
  • [12] J. C. Dallon, H. G. Othmer, C. v. Oss, A. Panfilov, P. Hogeweg, T. Höfer, and P. K. Maini, Models of Dictyostelium discoideum aggregation, in: W. Alt, A. Deutsch and G. Dunn (eds.), Dynamics of Cell and Tissue Motion, Birkhäuser, Basel, 1997, 193-202.
  • [13] A. Deutsch and S. Dormann, Cellular Automaton Modeling of Biological Pattern Formation, Birkhäuser, Boston, to appear, 2003.
  • [14] S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, J. In Silico Biol. (online journal) 2 (2002), 0035.
  • [15] D. Drasdo, R. Kree, and J. S. McCaskill, Monte-Carlo approach to tissue-cell populations, Phys. Rev. E 52 (1995), 6635-6657.
  • [16] R. Durrett, Stochastic models of growth and competition, in: S. A. Levin, T. M. Powell, and J. H. Steele (eds.), Patch Dynamics, Lecture Notes in Biomath. 96, Springer, Berlin, 1993.
  • [17] R. Durrett, Stochastic spatial models, in: V. Capasso and O. Dieckmann (eds.), Mathematics Inspired by Biology, Springer, Berlin, 1999, 39-94.
  • [18] L. Fahse, C. Wissel, and V. Grimm, Reconciling classical and individual-based approaches in theoretical population ecology: a protocol for extracting population parameters from individual-based models, The American Naturalist 152 (1998), 838-852.
  • [19] G. Forgacs and D. Drasdo, Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation, Devel. Dyn. 219 (2000), 182-191.
  • [20] D. Gernert, Cellular automata and the concept of space, in: J. D. Becker, I. Eisele, and F. W. Mündermann (eds.), Parallelism, Learning, Evolution, Lecture Notes in Artificial Intelligence, Lecture Notes in Comput. Sci., Springer, Berlin, 1990, 94-102.
  • [21] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
  • [22] J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E 47 (1993), 2128-2154.
  • [23] S. J. Gould, D’Arcy Thompson and the science of form, Boston Studies in the Philosophy of Science - Topics in the Philosophy of Biology 27 (1976), 66-97.
  • [24] P. B. Green, Transduction to generate plant form and pattern: an essay on cause and effect, Ann. Bot. 78 (1996), 269-281.
  • [25] D. Grünbaum, Translating stochastic density-dependent individual behavior with sensory constraints to an Eulerian model of animal swarming, J. Math. Biol. 33 (1994), 139-161.
  • [26] R. Haberlandt, S. Fritzsche, G. Peinel, and K. Heinzinger, Molekulardynamik - Grundlagen und Anwendungen, Vieweg, Braunschweig/Wiesbaden, 1995.
  • [27] H. Haken, Synergetics. An Introduction, Springer, Berlin, 1977.
  • [28] X. He and M. Dembo, A dynamical model of cell division, in: W. Alt, A. Deutsch, and G. Dunn (eds.), Dynamics of Cell and Tissue Motion, Birkhäuser, Basel, 1997, 55-65.
  • [29] W. His, Unsere Körperform und das physiologische Problem ihrer Entstehung, Vogel, Leipzig, 1874.
  • [30] T. Höfer, J. A. Sherratt, and P. K. Maini, Dictyostelium discoideum: cellular self-organization in an excitable biological medium, Proc. Roy. Soc. London B 259 (1995), 249-257.
  • [31] J. Holtfreter, A study of the mechanics of gastrulation. J. Exp. Biol. 94 (1943), 261-318.
  • [32] M. Howard, A. Rutenberg and S. de Vet, Dynamic compartmentalization of bacteria: accurate division in E. coli, Phys. Rev. Lett. 87 (2001), 278102.
  • [33] E. Jantsch, The Self-Organizing Universe: Scientific and Human Implications of the Emerging Paradigm of Evolution, Pergamon Press, Oxford, 1980.
  • [34] G. L. Jepsen, E. Mayr, and G. G. Simpson (eds.), Genetics, Paleontology, and Evolution, Princeton Univ. Press, Princeton, NJ, 1949.
  • [35] K. Kaneko, Theory and Applications of Coupled Map Lattices, Wiley, Chichester, 1993.
  • [36] D. Kaplan and L. Glass, Understanding Nonlinear Dynamics, Springer, New York, 1995.
  • [37] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1979. Section 132.
  • [38] V. Lendowski, Modellierung und Simulation der Bewegung eines Körpers in reaktiven Zweiphasenflüssigkeiten, Bonner Math. Schr. 296, 1997. Doctoral Thesis, Univ. Bonn.
  • [39] S. A. Levin, Population models and community structure in heterogeneous environments, in: T. G. Hallam and S. A. Levin (eds.), Mathematical Ecology, Biomathematics 17, Springer, Berlin, 1986.
  • [40] T. M. Liggett, Interacting Particle Systems, Springer, New York, 1985.
  • [41] A. Lindenmayer, Developmental algorithms: lineage versus interactive control mechanisms, in: S. Subtelny and P. B. Green (eds.), Developmental Order: its Origin and Regulation, Symp. Soc. Dev. Biol. 40, Liss., New York, 1982, 219-245.
  • [42] E. Mayr, The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Belknap Press, Cambridge, Mass., 1982.
  • [43] G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett. 61 (1988), 2332-2335.
  • [44] H. Meinhardt, Models of Biological Pattern Formation, Academic Press, London, 1982.
  • [45] N. Metropolis, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953), 1087-1092.
  • [46] A. Mogilner, A. Deutsch, and J. Cook, Models for spatio-angular self-organization in cell biology, in: W. Alt, A. Deutsch and G. Dunn (eds.), Dynamics of Cell and Tissue Motion, Birkhäuser, Basel, 1997, chapter III.1, 173-182.
  • [47] A. Mogilner and L. Edelstein-Keshet, Selecting a common direction. I. How orientational order can arise from simple contact responses between interacting cells, J. Math. Biol. 33 (1995), 619-660.
  • [48] D. Morale, Cellular automata and many-particle systems modeling aggregation behaviour among populations, Int. J. Appl. Math. Comp. Sci. 10 (2000), 157-173.
  • [49] G. D. Mostow (ed.), Mathematical Models for Cell Rearrangement, Yale Univ. Press, New Haven, CT, 1975.
  • [50] J. D. Murray and G. F. Oster, Generation of biological pattern and form, IMA J. Math. Appl. Med. Biol. 1 (1984), 51-75.
  • [51] C. Nüβlein Volhard, Determination of the embryonic axes of Drosophila, Development 112 Suppl. (1991), 1-10.
  • [52] K. Oelschläger, Many-particle systems and the continuum description of their dynamics, Habilitationsschrift, Univ. Heidelberg, 1989.
  • [53] A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer, Berlin, 1980.
  • [54] S. Omohundro, Modelling cellular automata with partial differential equations, Physica D 10 (1984), 128-134.
  • [55] G. F. Oster, J. D. Murray, and A. K. Harris, Mechanical aspects of mesenchymal morphogenesis, J. Embryol. Exp. Morphol. 78 (1983), 83-125.
  • [56] G. F. Oster, J. D. Murray, and P. K. Maini, A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions, J. Embryol. Exp. Morphol. 89 (1985), 93-112.
  • [57] H. G. Othmer, P. K. Maini, and J. D. Murray (eds.), Experimental and Theoretical Advances in Biological Pattern Formation, Plenum Press, New York, 1993.
  • [58] H. G. Othmer and A. Stevens, Aggregation, blowup and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math. 57 (1997), 1044-1082.
  • [59] Q. Ouyang and H. L. Swinney, Transition from a uniform state to hexagonal and striped Turing patterns, Nature 352 (1991), 610.
  • [60] P. Pelce and J. Sun, Geometrical models for the growth of unicellular algae, J. Theor. Biol. 160 (1993), 375-386.
  • [61] M. Pulvirenti and N. Bellomo (eds.), Modelling in Applied Sciences: a Kinetic Theory Approach, Birkhäuser, Boston, 2000.
  • [62] L. Rensing (ed.), Oscillations and Morphogenesis, Dekker, New York, 1993.
  • [63] P. Résibois and M. de Leener, Classical Kinetic Theory of Fluids, Wiley, New York, 1977.
  • [64] L. Schimansky-Geier, F. Schweitzer, and M. Mieth, Interactive structure formation with Brownian particles, in: F. Schweitzer (ed.), Self-organization of Complex Structures - from Individual to Collective Dynamics, Gordon and Breach, Amsterdam, 1997, 101-118.
  • [65] B. Schönfisch, Zelluläre Automaten und Modelle für Epidemien, PhD thesis, Univ. Tübingen, 1993.
  • [66] B. Schönfisch, Cellular automata and differential equations: an example, in: M. Martelli et al. (eds.), Proc. Internat. Conf. on Differential Equations and Applications to Biology and to Industry, World Sci., Singapore, 1996, 431-438.
  • [67] M. S. Steinberg, Reconstruction of tissues by dissociated cells, Science 141 (3579) (1963), 401-408.
  • [68] A. Stevens, Mathematical modeling and simulations of the aggregation of myxobacteria. Chemotaxis equations as limit dynamics of moderately interacting stochastic processes, PhD thesis, Univ. Heidelberg, 1992.
  • [69] A. Stevens and F. Schweitzer, Aggregation induced by diffusing and nondiffusing media, in: W. Alt, A. Deutsch, and G. Dunn (eds.), Dynamics of Cell and Tissue Motion, Birkhäuser, Basel, 1997, chapter III.2, 183-192.
  • [70] R. Thom, Stabilité Structurelle et Morphogénèse, Benjamin, New York, 1972.
  • [71] D’Arcy W. Thompson, On Growth and Form, Cambridge University Press, Cambridge, 1917.
  • [72] T. Toffoli, Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics, Physica D 10 (1984), 117-127.
  • [73] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London 237 (1952), 37-72.
  • [74] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applications, Reidel, Dordrecht, 1987.
  • [75] C. H. Waddington, New Patterns in Genetics and Development, Columbia Univ. Press, New York, 1962.
  • [76] M. Watzl and A. F. Münster, Turing-like spatial patterns in a polyacrylamidemethylene blue-sulfide-oxygen system, Chem. Phys. Lett. 242 (1995), 273-278.
  • [77] J. R. Weimar, Cellular automata and reactive systems, PhD thesis, Univ. Libre, Bruxelles, 1995.
  • [78] T. A. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47 (1981), 1400-1403.
  • [79] L. Wolpert, Positional information and pattern formation, Phil. Trans. Roy. Soc. London B 295 (1981), 441-450.
  • [80] A. Yotsumoto, A diffusion model for phyllotaxis, J. Theor. Biol. 162 (1993), 131-151.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0003-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.