PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Rotund Points, Nested Sequence of Balls and Smoothness in Banach Spaces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we continue our study of rotund points and, inter alia, show that various characterizations of strict convexity of X* like Vlasov's Theorem or Taylor-Foguel Theorem are locally consequences of properties of rotund points- a notion strictly stronger than extreme points. We observe that rotund points are a special kind of exposed points and obtain similar characterizations of wALUR and ALUR points. We characterize smooth, very smooth and Frechet smooth points in terms of straight unbounded nested sequences of balls. Various related notions are also studied in the local form.
Rocznik
Strony
163--186
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Stat-Math Division Indian Statistical Institute, 203, B. T. Road, Kolkata 700 108, India
autor
  • Department of Mathematics, The University of Iowa, Iowa City, IA 52242 USA
autor
  • Department of Mathematics, The University of Iowa, Iowa City, IA 52242 USA
Bibliografia
  • [1] Pradipta Bandyopadhyay, Exposed points and points of continuity in closed bounded convex sets, Functional analysis and operator theory (New Delhi, 1990), 120-127, Lecture Notes in Math., 1511, Springer, Berlin, 1992.
  • [2] Pradipta Bandyopadhyay and Sudeshna Basu, On a new asymptotic norming property, Indag. Math. (N.S.), 10 (1999), 15-23.
  • [3] Pradipta Bandyopadhyay and Sudeshna Basu, On nicely smooth Banach spaces, Extracta Math., 16 (2001), 27-45.
  • [4] P. Bandyopadhyay, Da Huang, Bor-Luh Lin and S. L. Troyanski, Some generalizations of locally uniform rotundity, J. Math. Anal. Appl., 252 (2000), 906-916.
  • [5] Pradipta Bandyopadhyay and Bor-Luh Lin, Some properties related to nested sequence of balls in Banach spaces, International Conference on Mathematical Analysis and its Applications (Kaohsiung, 2000), Taiwanese J. Math., 5 (2001), 19-34.
  • [6] P. Bandyopadhyay, V. P. Fonf, B. L. Lin and Miguel Martin, Structure of nested sequence of balls in Banach spaces, Houston J. Math., 29 (2003), 173-193.
  • [7] Pradipta Bandyopadhyay and Ashoke K. Roy, Nested sequences of balls, uniqueness of Hahn-Banach extensions and the Vlasov property, Rocky Mountain J. Math., 33 (2003), 27-67.
  • [8] S. Basu and T. S. S. R. K. Rao, Some stability results for asymptotic norming properties of Banach spaces, Colloq. Math., 75 (1998), 271-284.
  • [9] B. Beauzamy, Introduction to Banach spaces and their geometry, North-Holland Mathematics Studies, vol. 68, Notas de Matemática, vol. 86, North-Holland, Amsterdam, 1985.
  • [10] B. Beauzamy and B. Maurey, Points minimaux et ensembles optimaux dans les espaces de Banach, J. Funct. Anal. 24 (1977), 107-139.
  • [11] D. Chen and B. L. Lin, Ball separation properties in Banach spaces, Rocky Mountain J. Math., 28 (1998), 835-873.
  • [12] Shaul R. Foguel, On a Theorem by A. E. Taylor, Proc. Amer. Math. Soc., 9 (1958), 325.
  • [13] J. R. Giles, Strong differentiability of the norm and rotundity of the dual, J. Austral. Math. Soc., Ser. A, 26 (1978), 302-308.
  • [14] J. R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.
  • [15] J. R. Giles, D. A. Gregory and B. Sims, Geometrical implications of upper semi-continuity of the duality mapping on a Banach space, Pacific J. Math., 79 (1978), 99-109.
  • [16] J. R. Giles, P. S. Kenderov, W. B. Moors and S. D. Sciffer, Generic differentiability of convex functions on the dual of a Banach space, Pacific J. Math., 172 (1996), 413-431.
  • [17] Z. Hu and B. L. Lin, On the asymptotic-norming property of Banach spaces, Function spaces (Edwardsville, IL, 1990), 195-210, Lecture Notes in Pure and Appl. Math., 136, Dekker, New York, 1992.
  • [18] Z. Hu and B. L. Lin, Smoothness and the asymptotic-norming properties of Banach spaces, Bull. Austral. Math. Soc., 45 (1992), 285-296.
  • [19] J. E. Jayne, I. Namioka and C. A. Rogers, a-fragmentable Banach spaces, Mathematika, 39 (1992), 197-215.
  • [20] P. S. Kenderov and W. B. Moors, Fragmentability of Banach spaces, C. R. Acad. Bulgare Sci., 49 (1996), 9-12.
  • [21] Petar S. Kenderov and Warren B. Moors, Fragmentability and sigma-fragmentability of Banach spaces, J. London Math. Soc., 60 (1999), 203-223.
  • [22] I. Kortezov, Fragmentability and sigma fragmentability of topological spaces, Ph. D. Thesis, Math. Institute, Bulg. Acad. Sci. Sofia, (l998) (Bulgarian).
  • [23] Bor-Luh Lin, Pei-Kee Lin and S. L. Troyanski, A characterization of denting points of a closed bounded convex set, Texas Functional Analysis Seminar 1985-1986 (Austin, TX, 1985-1986), 99-101, Longhorn Notes, Univ.Texas, Austin, TX, 1986.
  • [24] A. Moltó, J. Orihuela, S. L. Troyanski and M. Valdivia, On weakly locally uniformly rotund Banach spaces, J. Funct. Anal., 163 (1999), 252-271.
  • [25] Eve Oja and Márt Põldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Studia Math., 117 (1996), 289-306.
  • [26] R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximations, Trans. Amer. Math. Soc., 95, (1960), 238-265.
  • [27] G. F. Simmons, Introduction to topology and modern analysis, McGraw-Hill Book Co., Inc., New York-San Francisco, Calif.-Toronto-London (1963).
  • [28] Mark A. Smith and Francis Sullivan, Extremely smooth Banach spaces, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976), pp. 125-137. Lecture Notes in Math., Vol. 604, Springer, Berlin, 1977.
  • [29] Francis Sullivan, Geometrical peoperties determined by the higher duals of a Banach space, Illinois J. Math., 21 (1977), 315-331.
  • [30] A. E. Taylor, The extension of linear functionals, Duke Math. J., 5 (1939), 538-547.
  • [31] L. P. Vlasov, Approximative properties of sets in normed linear spaces, Russian Math. Surveys, 28 (1973), 1-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0002-0101
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.