PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Property (L) in Orlicz sequence spaces equipped with the Luxemburg norm

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we prove that a banach space X with the property (L) with respect to the function [ro](r,s) has the uniform Opial property if and only if [ro](1,s)>1 for any s>0. The criterion in order that an Orlicz sequence space equipped with the Luxemburg norm has the property (L) is given.
Rocznik
Tom
Strony
301--309
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, Harbin University of Science and Technology, Harbin, 150080, P.R. China
autor
  • Department of Mathematics, Harbin University of Science and Technology, Harbin, 150080, P.R. China
Bibliografia
  • [1] S. T. Chen, Geometry of Orlicz Spaces, Dissertationes Mathematicae, 356, Warszawa, 1996.
  • [2] S. T. Chen, H. Hudzik and H. Y. Sun, Complemented copies of l1 in Orlicz spaces, Math. Nachr. 158 (1997), 299-309.
  • [3] J. Diestel, Sequence and Series in Banach Spaces, Graduate Texts in Mathematics, Springer-Verlag, 1984.
  • [4] P. R. Dowling, C. J. Lennard and B. Turett, Reflexivity and the fixed-point property for nonexpansive maps, J. Math. Anal. Appl. 200 (1996), 653-662.
  • [5] J. García-Falset, Stability and fixed points for nonexpansive mappings, Houston Math. 20 (1994), 495-505.
  • [6] H. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
  • [7] M. A. Khamsi, An uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces, Nonlinear Anal. Th. Meth. Appl. 26 (1996), 1733-1748.
  • [8] T. C. Lim, Asymptotic centers and nonexpansive mappings in some conjugate spaces, Pac. J. Math. 90, (1980) 135-143.
  • [9] Pei-Kee Lin, Kok-Keong Tan and Hong-Kun Xu, Semiemiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal. Th. Meth. Appl. 24 (1995), 929-946.
  • [10] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, 1983.
  • [11] Z. Opial, Weak convergence of the sequence of successive approximations for non expansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
  • [12] S. Prus, Banach spaces with uniform Opial property, Nonlinear Anal. Th. Meth. Appl. 8 (1992), 697-704.
  • [13] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc., New York-Basel-Hong Kong, 1991.
  • [14] B. Sims and M. Smith, On non-uniform conditions given weak normal structure, Questiones Math. 18 (1995), 9-19.
  • [15] K. Tan and H. Xu, On fixed point theorems of nonexpansive mappings in product spaces, Proc. Amer. Math. Soc. 113 (1991), 983-989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0002-0080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.