Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the paper is to give a theorem about the existence of solutions of a semilinear nonlocal Cauchy problem for ordinary differential equations in Banach spaces. Since all assumptions are expressed in terms of the weak topology, we obtain the existence of pseudo-integral-solutions instead of integral, Caratheodory or classical ones considered in previous papers.
Wydawca
Rocznik
Tom
Strony
185--199
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
autor
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
Bibliografia
- [1] H. Akca and L. Byszewski, Existence of solutions of a semilinear functional-differential euolution nonlocal problem, Nonlin. Anal. Theory Meth. Appl. 34 (1998), 65-72.
- [2] K. Balachandran and M. Chandrasekaran, Existence of solutions of a delay differential equation with nonlocal condition, Indian J. Pure Appl. Math. 27 (1996), 443-449.
- [3] K. Balachandran and S. Ilmaran, Existence and uniqueness of mild and strong solutions of a semilinear evolution equation with nonlocal conditions, Indian J. Pure Appl. Math. 25 (1994), 411-418.
- [4] A. V. Balakrishanan, Applied Functional Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
- [5] J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc. 63 (1977), 370-373.
- [6] J. M. Ball, Weak continuity properties of mappings and semi-groups, Proc. Royal Soc. Edinbourgh Sect. A 72 (1979), 275-280.
- [7] J. Banaś, On measures of noncompactness in Banach spaces, Comm. Math. Univ. Carolinae 21 (1980), 131-143.
- [8] J. Banaś and J. Rivero, Measure of weak noncompactness, Ann. Mat. Pura Appl. 125 (1987), 213-224.
- [9] F. S. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.
- [10] L. Byszewski, Differential and Functional-Differential Problems with Nonlocal Conditions, Cracow University of Technology, 1995 (in Polish).
- [11] L. Byszewski, Theorems about the existence of solutions of a semilinear evolution Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505.
- [12] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal. 40 (1990), 11-19.
- [13] M. Cichoń, Weak solutions of differential equations in Banach spaces, Disc. Math. Diff. Inclusions 15 (1995), 5-14.
- [14] M. Cichoń and P. Majcher, On semilinear nonlocal Cauchy problem, Atti Sem. Mat. Fis. Univ. Modena 49 (2001), 363-376.
- [15] G. Darbo, Punti uniti in trasformazioni a condominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
- [16] J. Diestel and J. J. Uhl Jr., Vector Measures, Math. Surveys 15, AMS, Providence, Rhode Island, 1977.
- [17] G. Emanuelle, Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. R. S. Roumanie 25 (1981), 353-358.
- [18] R. F. Geitz, Geometry and the Pettis integral, Trans. Amer. Math. Soc. 269 (1982), 535-548.
- [19] R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
- [20] E. Hill and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Coll. Publ. 31, 1957.
- [21] W. J. Knight, Solutions of differential equations in B-spaces, Duke Math, J. 41 (1974), 437-442.
- [22] I. Kubiaczyk, On the existence of solutions of differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 607-614.
- [23] Y. Lin and J. H. Liu, Semilinear integrodifferential equations with non-local Cauchy problem, Nonlin. Anal. Theory Meth. Appl. 26 (1996), 1023-1033.
- [24] A. R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in: Nonlin. Equations in Abstract Spaces (V. Lakshmikantham, ed.) (1978), 387-404.
- [25] S. K. Ntouyas and P. Ch. Tsamatos, Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl. 210 (1997), 679-687.
- [26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York-Berlin, 1983.
- [27] S. Rolewicz, Functional Analysis and Control Theory, PWN-Polish Scientific Publishers - D. Reidel Publ., Warsaw-Dordrech, 1987.
- [28] J. J. Uhl Jr., A characterization of strongly measurable Pettis integrable functions, Proc. Amer. Math. Soc. 34 (1972), 425-427.
- [29] I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Monographs 75, Longman, London, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0002-0073