PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On an operator functional equation in L1 [0, ∞) and Volterra-Fredholm type integral equations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existence of a solution of a nonlinear operator functional equation in the class of monotonic functions on the interval R+ = [0, oo) is investigated. The approach to establish the main result is based on the notion of measure of noncompactness and an associated fixed point theorem due to Darbo. A Volterra-Fredholm type integral equation arises as a particular case of the investigated nonlinear operator functional equation.
Rocznik
Tom
Strony
61--76
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
  • Faculty of Science, Alexandria University, Alexandria, Egypt
autor
  • Faculty of Science, Suez Canal University, Ismailia, Egypt
  • Faculty of Science, Suez Canal University, Ismailia, Egypt
Bibliografia
  • [1] J. Appell and P. P. Zabrejko, Continuity properties of the supperposition operator, preprint, University of Augsburg, 131, 1986.
  • [2] J. Banaś, On the superposition operator and integrable solutions of some functional equation, Nonlin. Analysis T.M.A. 12 (1988), 777-784.
  • [3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes in Pure and Appl. Math. 60, Marcel Dekker, New York and Basel, 1980.
  • [4] J. Banaś and W. G. El-Sayed, Monotonic solutions of a nonlinear Volterra integral equation, Aportaciones Matematicas en Memoria V. M. Onieva, Santander, 19-26, 1991.
  • [5] J. Banaś and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167, (1992), 133-151.
  • [6] J. Banaś and W. G. El-Sayed, Solvability of Functional and Integral Equations in Some Classes of Integrable Functions, Politechnika Rzeszowska, Rzeszów, 1993.
  • [7] K. Carathéodory, Vorlesungen über Reele Funktionen, De Gruyter, Leipzig-Berlin, 1918.
  • [8] N. Dunford and J. Schwartz, Linear Operators I, Int. Publ., Leyden, 1963.
  • [9] A. M. A. El-Sayed, W. G. El-Sayed and O. L. Moustafa, On some fractional functional equations, PU.M.A, 6, (1995), 321-332.
  • [10] G. Emmanuelle, About the existence of integrable solutions of a functional integral equation, Rev. Mat. Univ. Complut. Madrid 4, (1991), 65-69.
  • [11] M. A. Krasnoselskii, P. P. Zabrejko, J. I. Pustylnik and P. J. Sobolevskii, Integral Operators in Spaces of Summable Functions, Nauka, Moscow (1966), [English Translation: Noordhoff, Leyden (1976).].
  • [12] J. Krzyż, On monotonicity-preserving transformations, Ann. Univ. Marie Curie-Sklodowska, 6 Sect. A, (1952), 91-111.
  • [13] P. P. Zabrejko, A. I. Koshelev, M. A. Krasnoselskii, S. G. Mikhlin, L. S. Rakovshchik and V. j. Stecenko, Integral Equations, Noordhoff, Leyden, 1975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0002-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.