Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Classical solutions of the local Cauchy problem on the Haar pyramid are approximated in the paper by solutions of suitable quasilinear systems of difference equations. The proof of the stability of the difference problem is based on a comparison technique with nonlinear estimates of the Perron type. This new approach to the numerical solving of nonlinear equations with deviated variables is generated by a quasilinearization method for initial problems. Numerical examples are given.
Wydawca
Rocznik
Tom
Strony
1--31
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Mathematics, Technical University of Gdańsk, Narutowicz Street 11-12, 80-952 Gdańsk, Poland
autor
- Institute of Mathematics, University of Gdańsk, Wit Stwosz Street 57, 80-952 Gdańsk, Poland
Bibliografia
- [1] A. Baranowska, Z. Kamont, Finite difference approximations for nonlinear first order partial differential equations, Univ. Iagell. Acta Math., to appear.
- [2] H. Brunner, The numerical treatment of ordinary and partial Volterra integro-differential equations, Proceed. First Internat. Colloquium on Numerical Anal., Plovdiv, 17-23 August 1992; Eds.: D. Bainov, V. Covachev, 13-26, VSP Utrecht, Tokyo, 1993.
- [3] S. Cinquini, Sopra i sistemi iperbolici equazioni a derivate parziali (nonlineari) in piú varibili indipendenti, Ann. Mat. Pura ed Appl. 120 (1979), 201-214.
- [4] M. Cinquini Cibrario, Nuove ricerche sui sistemi di equazioni nonlineari a derivate parziali in piú variabili indipendenti, Rend. Sem. Mat. Fis. Univ. Milano 52 (1982), 531-550.
- [5] M. Cinquini Cibrario, Sopra una classe di sistemi di equazioni nonlineari a derivate parziali in piú variabili indipendenti, Ann. Mat. Pura ed Appl. 140 (1985), 223-253.
- [6] E. Godlewski, P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, Berlin, 1996.
- [7] D. Jaruszewska-Walczak, Z. Kamont, Numerical methods for hyperbolic functional differential problems on the Haar pyramid, Computing 65 (2000), 45-72.
- [8] Z. Kamont, Hyperbolic Functional Differential Inequalites and Applications, Kluwer Acad. Publ., Dordrecht, 1999.
- [9] Z. Kamont, On the local Cauchy problem for Hamilton Jacobi equations with a functional dependence, Rocky Mount. Journ. Math. 30 (2000), 587-608.
- [10] Z. Kowalski, A difference method for the nonlinear partial differential equations, Ann. Polon. Math. 18 (1966), 235-242.
- [11] Z. Kowalski, A difference method for certain hyperbolic systems of nonlinear partial differential equations of first order, Ann Polon. Math. 19 (1967), 313-322.
- [12] Z. Kowalski, On the difference method for certain hyperbolic systems of nonlinear partial differential equations of the first order, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 297-302.
- [13] M. Malec, M. Mączka, W. Voigt, Weak difference-functional inegualities and their application to the difference analogue of nonlinear parabolic differential-functional equations, Beitr. Numer. Math. 11 (1983), 69-79.
- [14] M. Malec, M. Rosati, A convergent scheme for nonlinear systems of differential functional equations of parabolic type, Rend. Mat. (7) (1983), 211-227.
- [15] M. Malec, A. Schiafiano, Méthode aux différence finies pour une équation non-linéaire differentielle fonctionnelle du type parabolique avec une condition initiale de Cauchy, Boll. Un. Mat. Ital. B (7), 1 (1987), 99-109.
- [16] A. Pliś, On difference inequalities corresponding to partial differential inegualities of first order, Ann. Polon. Math. 28 (1968), 179-181.
- [17] K. Prządka, Difference methods for non-linear partial differential-functional equations of the first order, Math. Nachr. 138 (1988), 105-123.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0002-0062