PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka zjawiska interferencji RNA : podstawy strukturalne i właściwości siRNA

Autorzy
Identyfikatory
Warianty tytułu
EN
Characterization of RNA interference mechanism : structural basics and features of small interfering RNAs
Języki publikacji
PL
Abstrakty
EN
RNA interference (RNAi) is a natural biological mechanism for sequence-specific posttranscriptional gene silencing triggered by double-stranded RNA (dsRNA) homologous to a silenced gene. RNAi is found in a wide range of eukaryotes including human cells. The natural function of RNAi appears to be protection of a genome against invasion by mobile genetic elements such as transposons and viruses which produce aberrant RNA or dsRNA in a host cell. Specific mRNA degradation prevents transposon and virus replication. The majority of studies on the molecular mechanism underlying RNAi activity has been conducted in vivo using Drosophila melanogaster and Caenorhabditis elegans or in selected mammalian cell cultures. It has been demonstrated that long dsRNA is cleaved to 21–23 nucleotide long fragments by RNase III-like nuclease Dicer. These short interfering RNAs (siRNAs) are essential sequence–specific mediators of RNAi. They are bound by RNAi specific enzymes of nuclease complex RISC that targets mRNA for degradation. In this complex siRNA recognises, binds and cleaves the target mRNA. Cleavage occurs in the middle of the mRNA region recognized by the siRNA. The second model, which has been proposed for RNAi to explain the mechanism by which siRNA direct target mRNA destruction, requires RNA-dependent RNA polymerase (RdRP) to convert the target mRNA into dsRNA. RdRP is hypothesized to use antisense strand of siRNA as a primer in mRNA templated synthesis of complementary chain RNA. The resulting dsRNA is proposed to be cleaved then by Dicer for generation of secondary siRNA. Short interfering RNAs can be synthesized chemicaly or by in vitro transcription with T7 RNA polymerase, or expressed from siRNA coding vectors in the cells. These 21-nt siRNA duplexes cause efficent inhibition of exogenous and endogenous genes expression in a sequence-specific manner. Detailed analysis of potential modifications, that can be introduced into siRNA strands shows, that chemical modifications of sense strand are tolerated without loss of RNAi activity. However, some modification of antisense strand of siRNA (especially in the middle of the chain as well as modification of the 5’end) completely abolish RNAi. These results indicate that two strands of siRNA have different function in RNAi. RNAi approach can be broadly used for analysis of gene functions, and, what is even more important, this phenomenon can be used for searching new agents for therapeutic applications.
Rocznik
Strony
569--585
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • Centrum Badań Molekularnych i Makromolekularnych PAN, ul. Sienkiewicza 112, 90-363 Łódź
autor
  • Centrum Badań Molekularnych i Makromolekularnych PAN, ul. Sienkiewicza 112, 90-363 Łódź
Bibliografia
  • [1] A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello, Nature, 1998, 391, 806.
  • [2] S. Elbashir, W. Lendeckel, T. Tuschl, Genes Dev., 2001, 15, 188.
  • [3] E. Bernstein, A.A. Caudy, S.M. Hammond, G.J. Hannon, Nature, 2001, 409, 363.
  • [4] P. Zamore, T. Tuschl, P. Sharp, D. Bartel, Cell, 2001, 101, 25.
  • [5] S.M Hammond, E. Bernstein, D. Beach, G.J. Hannon, Nature, 2000, 404, 293.
  • [6] A. Nykanen, B. Haley, P. Zamore, Cell, 2001, 107, 309.
  • [7] C. Lipardi, Q. Wei, B. Paterson, Cell, 2001, 107, 297.
  • [8] T. Sijen, J. Fleenor, F. Simmer, K.L.Thijssen, S. Parrish, L. Timmons, A. Plasterk,. A. Fire, Cell, 2001, 107, 465.
  • [9] K. Nishikura, Cell, 2001, 107, 415.
  • [10] G.R. Stark, I.M. Kerr, B.R. Wiliams, R.H. Silverman, R.D. Schreiber, Annu. Rev. Biochem., 1998, 67, 227.
  • [11] S. Elbashir, T. Tuschl, Nature, 2001, 411, 494.
  • [12] T. Holen, M. Amarzguioui, M. Wiiger, E. Babaie, H. Prydz, Nucleic Acid Res., 2002, 30 1757.
  • [13] H. Hohjoh, FEBS Lett., 2002, 521, 195.
  • [14] M. Hamada, R. Kawaida, M. Koizumi, K. Morita, H. Furukawa, T. Imanishi, M. Miyagishi, K. Taira, Antisense Nucleic Acid Drug Dev., 2002, 12(5), 301.
  • [15] S. Elbashir, J. Martimez, A. Patkaniowska, W. Lendeckel, T. Tuschl, EMBO J., 2001, 20(23), 6877.
  • [16] Y.L. Chiu, T.M. Rana, Mol. Cell 2002, 10, 549.
  • [17] D.S. Schwarz, G. Hutvagner, B. Haley, P.D. Zamore, Mol. Cell, 2002, 10, 537.
  • [18] S. Parrish, J. Fleenor, S. Xu, A. Fire, C.C. Mello, Mol. Cell, 2000, 6, 1077.
  • [19] O. Donze, D. Picard, Nucleic Acid Res., 2002, 30, e46.
  • [20] J. Capodici, K. Kariko, D. Weissman, J. Immunol., 2002, 169, 5196.
  • [21] D. Yang, F. Buchholz, Z. Huang, A. Goga, Ch-Y. Chen, F.M. Brodsky, J.M. Bishop, Proc. Natl. Acad. Sci. USA, 2002, 99, 9942.
  • [22] H. Kawasaki, E. Suyama, M. Iyo, K. Taira, Nucleic Acids Res., 2003, 31(3), 981.
  • [23] J.W. Myers, J.T. Jones, T. Meyer, J.E. Ferrell Jr, Nat. Biotech., 2003, 21, 324.
  • [24] P.J. Paddison, A.A. Caudy, E. Bernstein, G.J. Hannon, D.S. Conklin, Genes Dev., 2002, 16(8), 948.
  • [25] T.R. Brummelkamp, R. Bernards, R. Agami, Science, 2002, 296, 550.
  • [26] J.Y. Yu, S.L. DeRuiter, D.L. Turner, Proc. Natl. Acad. Sci. USA, 2002, 99, 6047.
  • [27] G. Sui, C. Soohoo, E. Affar, F. Gay, Y. Shi, W.C. Forrester, Y. Shi, Proc. Nat! Acad. Sci. USA, 2002, 99, 5515.
  • [28] H. Kawasaki, K. Taira, Nucleic Acids Res., 2003, 31, 700.
  • [29] C.P. Paul, P.D. Good, I. Winer, D.R. Engelke. Nat. Biotech., 2002, 19, 505.
  • [30] M. Miyagishi, K. Taira, Nat. Biotech., 2002, 19, 497.
  • [31] G.A. Cobum, B.R. Cullen, J. Virol., 2002, 76, 9225.
  • [32] L. Gittlin, S. Karelsky, R. Andino, Nature, 2002, 418, 430.
  • [33] J.M. Jacque, K. Triques, M. Stevenson, Nature, 2002, 418, 435.
  • [34] N.S. Lee, T. Dohjima, G. Bauer, H. Li, M-J. Li, A. Ehsani, P. Salvaterra, J. Rossi, Nat. Biotech., 2002, 19, 500.
  • [35] M.A. Martinez, B. Clotet, J.A. Este, Trends Immunol., 2002, 23, 559.
  • [36] M.A. Martinez, A. Gutierrez, M.A. Ugon, J. Blanco, M. Parera, J. Gomez, B. Clotet, J.A. Este, AIDS, 2002, 16, 2385.
  • [37] H. Xia, Q. Mao, H.L. Paulson, B.L. Davidson, Nat. Biotech., 2002, 20, 1006.
  • [38] A.P. Caffrey, L. Meuse, T.T.T. Pham, D.S. Conklin, G.J. Hannon, M.A. Kay, Nature, 2002, 418, 38.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0001-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.