PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kwantowochemiczne metody prognozowania selektywności [2 + 3] cykloaddycji

Identyfikatory
Warianty tytułu
EN
Quantum-chemical methods for selectivity prediction of [2 + 3] cycloaddition
Języki publikacji
PL
Abstrakty
EN
In general, quantum-chemical methods for prediction of the outcome of cycloaddition reactions can be classified into three groups, depending on the particular reaction steps. The least used first group comprises the reactivity indexes, which are based on the analysis of stationary states of substrates. The second group contains the indirect methods of determination of activation energy, such as PMO, FMO and BL. The third group includes the methods relying on finding and characterization of critical structures on the corresponding potential energy hypersurface. BL and PMO methods can be applied only for the reactions that obey the principle of non-intercrossing of the energy profiles. These methods are mutually complementary and are used for description of different reaction stages of [2+3] cycloadditions. In the case of a late transition state, the activation energy is controlled primarily by the electronic effects related to formation of new bonds, rather than by the weak donor-acceptor interactions of substrates that are the basis for PMO and FMO methods. Reverse situation occurs when the activation barrier is controlled by an early transition state whose structure resembles substrates. Despite some reported successes, BL method has not become so popular as PMO. This results probably from the narrower scope of potential applications of the former method compared to the later one as well as from the BL method formalism. BL is used for explanation of specific aspects of [2+3] cycloadditions rather than for the reactivity predictions in the literal sense. Availability of fast computers and advanced quantum-chemical software has caused the [2+3] cycloaddition analysis based on localization and characterization of critical points on the potential energy hypersurface has gained popularity in recent years. Such analysis affords information about reactivity of the reagents, reaction mechanism, and, regio-, stereo- and periselectivity of practically any kind of reactions. By this method, transition state geometry and its physicochemical parameters, such as charge distribution, ionization potential, or dipole moment, can be determined. The transition state dipole moment can be used for prediction of the reaction course in solvents of different polarity. Moreover, there are procedures for direct calculations in the presence of a simulated dielectric medium, such as a solvent.
Rocznik
Strony
9--38
Opis fizyczny
Bibliogr. 95 poz., wykr.
Twórcy
  • Instytut Chemii i Technologii Organicznej Politechniki Krakowskiej ul. Warszawska 24, 31-155 Kraków
  • Instytut Chemii i Technologii Organicznej Politechniki Krakowskiej ul. Warszawska 24, 31-155 Kraków
  • Instytut Chemii i Technologii Organicznej Politechniki Krakowskiej ul. Warszawska 24, 31-155 Kraków
  • Instytut Chemii i Technologii Organicznej Politechniki Krakowskiej ul. Warszawska 24, 31-155 Kraków
Bibliografia
  • [1] M. Dupuis, Supercomputer Simulations in Quantum Chemistry, Lecture Notes in Chemistry, Springer-Veriag, Berlin 1986, vol. 44.
  • [2] E. Clementi, Computational Aspects fo r Large Chemical Systems, Lecture Notes in Chemistry, Springer-Verlag, Berlin 1980, vol. 19.
  • [3] A J. Sadlej, Elementarne metody chemii kwantowej, PWN, Warszawa 1966.
  • [4] M.V. Bazilevskii, Metod molekularnych orbit i reakcyonnaya sposobnost' organicheskikh molekuł, Khimya, Moskva 1997.
  • [5] R. Franke, Theoretical Drug Design Methods, Elsevier, Amsterdam 1984.
  • [6] M. Cocchi, M.C. Meuziani, F. Fanelli, P.G. Debeneti, J. Mol. Struct. (Theochem), 1995, 79, 331.
  • [7] M. Karelson, V.S. Lobanov, A.R. Kartitzky, Chem. Rev., 1996, 96, 1027.
  • [8] S.P. Gupta, P. Singh, M.C. Bindal, Chem. Rev., 1983, 83, 633.
  • [9] K.N. Houk, J. Sims, R.E. Duke, R.W. Strozier, J.K. George, J. Am. Chem. Soc., 1973, 95, 7287.
  • [10] K.N. Houk, J. Sims, Ch.R. Watts, L J. Luskus, I Am. Chem. Soc.,. 1973, 95, 7301.
  • [11] R. Sustsmann, W. Sicking, Tetrahedron, 1988, 44, 379.
  • [12] T.D. Samuilov, A.I. Konovalov, Usp. Khim., 1984, 53, 566.
  • [13] A.I. Konovalov, Usp. Khim., 1983, 54, 1853.
  • [14] W.I. Minkin, B.J. Simkin, R.M. Minaev, Kvantovaya khimya organicheskikh soednienii, Khimya, Moskva 1986.
  • [15] A. Barański, Wiad. Chem., 2000, 54, 53.
  • [16] A. Barański, E. Cholewka, J. Kula, Czasopismo Tecłm. PK (Chemia), 1994, 98.
  • [17] D. Sengupta, A.K. Chandra, M.T. Nguyen, J. Org. Chem., 1997, 62, 6404.
  • [18] A.K. Chandra, P. Geerlings, M.T. Nguyen, J. Org. Chem., 1997, 62, 6417.
  • [19] A.K. Chandra, M.T. Nguyen, J. Comp. Chem., 1997,19, 195.
  • [20] A.K. Chandra, T. Uchimaru, M.T. Nguyen, J. Chem. Soc., Perkin Trans. 2,1999, 2117.
  • [21] M.T. Nguyen, A.K. Chandra, S. Sakai, K. Morokuma, J. Org. Chem., 1999, 64, 65.
  • [22] R.G. Parr, W. Yang, Density Functional Theory o f Atoms and Molecules, Oxford University Press, New York 1989.
  • [23] R.G. Pearson, Chemical Hardness, Wiley-VCH, New York 1997.
  • [24] W. Yang, R.G. Parr, Proc. Natl. Acad. Sci. USA, 1983, 82, 6723.
  • [25] W. Yang, W.J. Mortier, J. Am. Chem. Soc., 1986,108, 5708.
  • [26] J.L. Gazquez, F. Mendez, J. Phys. Chem., 1994, 98, 4591.
  • [27] R.A.Y. Jones, Fizyczna chemia organiczna. Mechanizmy reakcji organicznych, PWN, Warszawa 1988.
  • [28] E.G. Klopman, Chemical Reactivity and Reaction Paths. Wiley, New York 1972.
  • [29] J. Suwiński, Mechanizmy i stereochemia reakcji organicznych w świetle współczesnych teorii budowy i reaktywności cząsteczek organicznych, wyd. Politechniki Śląskiej, Gliwice 1984.
  • [30] J.S. Dewar, R.C. Dougherty, The PMO Theory o f Organie Chemistry, Plenum Press, New York 1975.
  • [31] R. Huisgen, [w:] 1,3-Dipolar Cycloaddition Chemistry, A. Padwa (red.), Wiley, New York 1984, vol. 1, s. 1.
  • [32] A. Gołębiewski, Elementy mechaniki i chemii kwantowej, PWN, Warszawa 1982.
  • [33] R.S. Mulliken, J. Phys. Chem., 1952, 56, 295.
  • [34] K.N. Houk, J. Sims, Ch.R. Watt, J. Am. Chem. Soc., 1973, 95, 7501.
  • [35] R. Sustmann, W. Sicking, Chem. Ber., 1987,120, 1471.
  • [36] M. Burdisso, R. Gandolfi, S. Quartieri, A. Rastelli, Tetrahedron, 1987, 43, 159.
  • [37] A. Barański, G. Banki, Coli. Czech. Chem. Commun., 1991, 56, 425.
  • [38] V.A. Tartakowskii, LE. Chlenov, Zh. Vsesoiuz. Khim. Obshch., 1977, 252.
  • [39] K. Fukui, Theory o f Orientation and Stereoselection, Springer-Verlag, Berlin 1975.
  • [40] I. Fleming, Hranićni orbitaly a reakce v organicke chemii, NTL, Praha 1983.
  • [41] K.N. Mok, M.J. Nye, J. Chem. Soc., Perkin Trans. II, 1975, 1810.
  • [42] R. Sustmann, Tetrahedron Lett., 1971, 717 i 2721.
  • [43] K.N. Houk, L.J. Luskus, N.S. Bhacca, J. Am. Chem. Soc., 1970, 92, 6592.
  • [44] J. Sadlej, Półempiryczne metody chemii kwantowej CNDO, INDO, NDOO, PWN, Warszawa 1977.
  • [45] M.G. Evans, A. Polanyi, Trans. Farad. Soc., 1938, 34, 11.
  • [46] K.J. Burstein, P.P. Shorygin, Kvantokhimicheskie razchiety w organicheskoi khimii i molekularnoi spektroskopii, Nauka, Moskwa 1989.
  • [47] H.M. Zhidomirov, A.A. Bagaturiants, I.A. Abronin, Prikladnaya kvantovaya khimya, Khimya, Moskwa 1999.
  • [48] C. Gonzales, H.B. Schegel, J. Phys. Chem., 1990, 94, 5523.
  • [49] A. Barański, Khim. Geterotskl. Soed., 2000, 840.
  • [50] M. Wazeer, A. Aki, J. Khan, Tetrahedron, 1988, 44, 5911.
  • [51] K.N. Houk, Acc. Chem. Res., 1975,11, 361.
  • [52] N.K. Houk, Topics in Current Chem., 1979, 79, 1.
  • [53] P. De Benedetti, S. Quastieri, A. Rastelli, M. De Amici, C. De Micheli, R. Gandolfi, P. Gariboldi, J. Chem. Soc., Perkin Trans. II, 1982, 95.
  • [54] U. Chiocchio, F. Casuscelli, A. Corsaro, Tetrahedron, 1994, 50, 6671.
  • r55] R. Huisgen, R. Grashey, H. Hauck, H. Seidl, Chem. Ber., 1968, 101, 2548
  • [56] K. Harano, F. Suematsu, T. Matsouka, T. Hisano, Chem. Pharm. Buli., 1984, 32, 543.
  • [57] T. Hisano, S. Yoshikawa, K. Muraoka, Chem. Pharm. Buli., 1974, 22, 1611.
  • [58] T. Hisano, S. Yoshikawa, T. Matsouka, H. Hagiwara, K. Muraoka, T. Komori, K. Harano, Y. Ida, Chem. Pharm. Buli., 1979, 27, 2261.
  • [59] H.G. Auriełi, M. Franzke, H.P. Kesselheim, M. Rohr, Tetrahedron, 1992, 48, 669.
  • [60] A. Padwa, W.H. Bullock, D.N. Kline, J. Pemmaltman, J. Org. Chem., 1989, 54, 2862.
  • [61] S. Baskaran, C. Baskaran, P.J. Nadkami, G.K. Trivedi, Tetrahedron, 1997, 53, 7057.
  • [62] F. Farina, M.V. Martin, F. Sanchez, Heterocycles, 1986, 24, 2587.
  • [63] L. Fisera, J. Kovac, J. Lesko, V. Smahovsky, Chem. Zvesti, 1981, 35, 93.
  • [64] A. Barański, E. Cholewka, Polish J. Chem., 1991, 65, 319.
  • [65] A. Barański, J. Kula, E. Cholewka, Polish J. Chem., 1990, 64, 753.
  • [66] A. Barański, J. Kula, Polish J. Chem., 1991, 65, 2069.
  • [67] R. Sustmann, W. Sicking, M. Feldhaft, Tetrahedron, 1990, 46, 783.
  • [68] R. Sustmann, W. Sicking, R. Huisgen, J. Am. Chem. Soc., 1995,117, 9679.
  • [69] Yu.D. Samuilov, S.E. Soloveva, A.I. Konovalov, Zh. Obshch. Khim., 1980, 50, 138.
  • [70] Yu.D. Samuilov, S.E. Soloveva, A.I. Konovalov, Zh. Obshch. Khim., 1984, 16, 1228.
  • [71] C. Magnuson, J. Pranata. J. Comp. Chem., 1998,19, 1795.
  • [72] O. Wiest, K.N. Houk, Topics in Current Chem., 1996, 183, 1.
  • [73] L.R. Domingo, Eur. J. Org. Chem., 2000, 2273.
  • [74] A. Barański, M. Olszańska, M. Barańska, J. Ph. Org. Chem., 2000, 13, 489.
  • [75] A. Barański, Polish. J. Chem., 2000, 74, 767.
  • [76] A. Barański, Polish. J. Chem., 1999, 73, 1711
  • [77] W. Taborski, A. Barański, Khim. Geterotskł. Soed., 1998, 1204.
  • [78] A. Barański, W. Taborski, A. Bodura, Khim. Geterotskł. Soed., 1998. 378.
  • [79] W. Taborski, A. Bodura, A. Barański, Khim. Geterotskł. Soed., 1998, 373.
  • [80] A. Barański, R. Jasiński, A. Markowska, Materiały V Międzynarodowej Konferencji Theoretical and Experimental Backgrounds o f Development o f New High Performing Chemical Technologies and Equipment, Ivanovo (Russia) 26-28 June 2001, s. 118.
  • [81] M. Carda, R. Ponoles, J. Murga, S. Uriel, A. Marco, L.R. Domingo, R.J. Zaragoza, H. Roper, J. Org. Chem., 2000, 65, 7000.
  • [82] K Tanaka, T. Imase, S. Iwata, Bull. Chem. Soc. Jpn., 1996, 69, 2243.
  • [83] M. Si-Yu, F. Xiao-Yuan, Acta Chim. Sin., 1992, 50, 811.
  • [84] M. Si-Yu. F. Xiao-Yuan, Acta Chim. Sin., 1993, 51, 496.
  • [85] M. Si-Yu, F. Xiao-Yuan, Acta Chim. Sin., 1994, 52, 217.
  • [86] A. Barański, J. Cioslowski, Coll. Czech. Chem. Commun., 1991, 56, 1167.
  • [87] M. Essefar, R. Jafal, M. Messaondi, J. Mol. Struct. (Theochem), 1998, 433, 301.
  • [88] A. Barański, J. Mol. Struct. (Theochem), 1998, 432, 229.
  • [89] A. Barański, J. Mol. Struct. (Theochem), 2000, 499, 185.
  • [90] V.V. Melnikov, S.A. Zacheslavskii, B.W. Tigasnov, Zh. Org. Khim., 1975, 11, 2010.
  • [91] E. Muray, A. Alvarez-Lorena, J.F. Piniella, V. Brauchadell, R.M. Ortuno, J. Org. Chem., 2000, 65, 388.
  • [92] N.F. Pyupalo, I.I Zakharov, O.I. Kolbasina, G.M. Zhidomirov, V.I. Avdeev, Zh. Strukt Khim., 2000, 41, 240.
  • [93] A. Klamt, J. Phys. Chem., 1995, 99, 2224.
  • [94] J. Tomasi, M. Perisco, Chem. Rev., 1994, 94, 2027.
  • [95] U. Morau, T.A. Pakkanen, M. Karelson, J. Chem. Soc. Perkin Trans. 2, 2445 (1994).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0010-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.