PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie oddziaływania wodoru z metalami przejściowymi za pomocą teorii funkcjonałów gęstości (DFT). Perspektywa kwantowych modeli katalizy heterogenicznej

Identyfikatory
Warianty tytułu
EN
Density functional calculations of interaction of molecular hydrogen with transition metals. Perspectives of quantum models of heterogeneous catalysis
Języki publikacji
PL
Abstrakty
EN
Computer modelling of catalytic effects of a series of the transition metals and their alloys on the process of dissociation of molecular hydrogen has been performed. The project was composed of three stages. First, the binding energy versus the internuclear distance has been calculated for a series of metal dimers and mixed dimers: Ni2, NiCu, Cu2, Ag2, AgPd, Pd2 Au2, Pt2, AuPt. It has been shown that the traditional methods of quantum chemistry: the ZINDO semiempirical methods and the Hartree-Fock methods do not work properly in the case of the transition metal dimers. In contrast with these methods, the calculations based on the nonlocal version of the density functional theory (DFT) provide very good results, in full agreement with available experimental data concerning the dissociation energies and equilibrium bond lengths of the metal dimers. Then, using the fitted Morse form of the potential interaction between the metal atoms, the Molecular Dynamics (MD) simulations have been performed in order to obtain the atomic structures appearing in the alloys. The third part of the project includes the quantum-chemical calculations of hydrogen atom and hydrogen molecule positioned over the metallic dimers. The interatomic distances of the dimers were taken from the MD calculations. A range of the distances of hydrogen from the metal dimers was scanned. The evolution of energy and electron density with the hydrogen distance from certain dimers, like NiCu, AgPd and Pd2, clearly exhibits the process of the hydrogen molecule dissociation. On a basis of these calculations a measure of catalytic power of the metals was defined and the series of metals and alloys was ordered according to their catalytic power. It was found that the highest catalytic power with respect to the hydrogen dissociation process is exhibited by NiCu alloys. All the quantum-chemical calculations have been performed using the methods of the Density Functional Theory. The nonlocal version of the DFT was applied with the gradient-corrected hybrid functionals for electron exchange and correlation. The GAUSSIAN 98 suite of programs was employed in the calculations.
Rocznik
Strony
629--655
Opis fizyczny
fot., wykr., bibliogr. 31 poz.
Twórcy
  • Katedra Chemii Teoretycznej, Uniwersytet Łódzki ul. Pomorska 149/153, 90-236 Łódź
  • Instytut Techniki Radiacyjnej, Politechnika Łódzka ul. Wróblewskiego 15, 93-590 Łódź
  • Katedra Chemii Teoretycznej, Uniwersytet Łódzki ul. Pomorska 149/153, 90-236 Łódź
autor
  • Instytut Techniki Radiacyjnej, Politechnika Łódzka ul. Wróblewskiego 15, 93-590 Łódź
  • Instytut Techniki Radiacyjnej, Poitechnika Łódzka , ul. Wróblewskiego 15, 93-590 Łódź, wmb@mitr.p.lodz.pl
Bibliografia
  • [1] B. Grzybowska-Świerkosz, Elementy katalizy heterogenicznej, PWN, Warszawa 1993.
  • [2] G.A. Somorjai, Introduction to Surface Chemistry and Catalysis, Wiley, New York 1994.
  • [3] F. Mathey. A. Sevin, Molecular Chemistry o f the Transition Elements, Wiley, Chichester 1996.
  • [4] D.R. Salahub, Transition-metal atoms and dimers, [w:] Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry, red. K.P. Lawley, J. Wiley, New York 1987, vol. LXIX, s. 447.
  • [5] Gaussian 98 (Revision A.l): M.J. Frisch, G.W. Trucks, H.B. Schlegel, M.A. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B Menucci, C. Pomelli, C. Adamo, S Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T.A. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Popie. Gaussian Inc.: Pittsburgh PA, 1998.
  • [6] M.C. Zemer, Semi empirical molecular orbital methods, [w:] Reviews o f Computational Chemistry, red. K.B. Lipkowitz, D.B. Boyd, VCH Publishing, New York 1991, 2, 313.
  • [7] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian, Inc., Pittsburgh 1998.
  • [8] R.G. Parr, W. Yang, Density-Functional Theory o f Atoms and Molecules, Oxford U.P., New York 1989.
  • [9] Density Functional Theory, I. Functionals and Effective Potentials, red. R.F. Nalewajski, Springer, Berlin 1996.
  • [10] W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH, Weinheim 2000.
  • [11] E. Brocławik, R. Vetrivel, A. Miyamoto, [w:] Recent Developments and Applications o f Modern Density Functional Theory, red. J.M. Seminario, Elsevier, Amsterdam 1996.
  • [12] Transition State Modeling fo r Catalysis, red. D.G. Truhlar, K. Morokuma, ACS Symposium Series vol. 215, American Chemical Society, Washington 1999.
  • [13] L.D. Landau, E.M. Lifszyc, Mechanika kwantowa, wyd. 2, PWN, Warszawa 1979, s. 254.
  • [14] J.C. Slater, Phys. Rev., 1951, 81, 385.
  • [15] J.C. Slater. Quantum Theory of Molecules and Solids, vol. 4. The Self-Consistent Field for Molecules and Solids, McGraw-Hill, 'iew York 1974.
  • [16] P- Hohenberg, W. Kohn, Phys. Rev., 1964, 136. B864.
  • [17] W. Kohn, LJ. Sham, ibid., 1965, 14C. A1133.
  • [18] A. Becke, Int. J. Quantum Chem., 1985, 27, 585.
  • [19] A.D. Becke, Phys. Rev. A, 1988, 38, 3098.
  • [20] K. Burke, J.P. Perdevv, Y. Wang, [w:] Electronic Density Functional Theory: Recent Progress and ,Veiv Directions, red. J.F. Dobson, G. Vignale, M.P. Das, Plenum, New York 1998.
  • [21] P.M.W. Gill. Mol. Phys., 1996. 89, 433.
  • [22] C. Lee. W. Yang, R.G. Parr, Phys. Rev. B. 1988. 37. 785.
  • [23] J.P. Perdew, ibid., 1986, 33, 8822.
  • [24] A.D. Becke, J. Chem. Phys., 1996,104. 1040.
  • [25] S.H. Vosko, L. Wilk, M. Nusair, Canadian J. Phys. 1980. 58, 1200.
  • [26] S. Romanowski, W.M. Bartczak, M. Sopek, T. Pietrzak, Bull. Polish Acad. Sciences, Chemistry, 1996, 44, 123.
  • [27] S. Romanowski, W.M. Bartczak, R. Wesołkowski, Langmuir, 1999, 15, 5773.
  • [28] S.F. Boys, F Bernardi. Mol. Phys.. 1970. 19, 553.
  • [29] O. Matsuoka, E. Clementi, M. Yoshimine. J. Chem. Phys. 1976, 64. 1351.
  • [30] S. Romanowski, T. Pietrzak, W.M. Bartczak, Bull. Polish Acad. Sciences, Chemistry. 1998,46, 397.
  • [31] S. Romanowski, T. Pietrzak, W M. Bartczak, Bull. Polish Acad. Sciences, Chemistry, 1999,47, 143.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0010-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.