Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper generalizes the notion of symmetrical neighbourhoods, which have been used to define connectivity in the case of sets, to the wider framework of complete lattices having a sup-generating family. Two versions (weak and strong) of the notion of a symmetrical dilation are introduced, and they are applied to the generation of ``connected components'' from the so-called ``geodesic dilations''. It turns out that any ``climbing'' ``weakly symmetrical'' extensive dilation induces a ``geodesic'' connectivity. When the lattice is the one of subsets of a metric space, the connectivities which are obtained in this way may coincide with the usual ones under some conditions, which are clarified. The abstract theory can be applied to grey-level and colour images, without any assumption of translation-invariance of operators.
Wydawca
Czasopismo
Rocznik
Tom
Strony
349--395
Opis fizyczny
bibliogr. 19 poz.
Twórcy
autor
autor
- LSIIT UPRES-A 7005, Universtié Louis Pasteur, Departement d'Informatique, Boulevard Sébastian Brant, 67400 Illkirch, France, ronse@dpt-info.u-strasbg.fr
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0009-0100