PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modele matematyczne w biologii : wprowadzenie

Autorzy
Identyfikatory
Warianty tytułu
EN
Mathematical models in biology - an introduction
Języki publikacji
PL
Abstrakty
Rocznik
Tom
Strony
3--34
Opis fizyczny
bibliogr. 111 poz.
Twórcy
autor
  • Instytut Matematyki Stosowanej i Mechaniki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa Instytut Matematyki Stosowanej i Mechaniki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszaws, lachowic@mimuw.edu.lpl
Bibliografia
  • [AB] J. Adam, N. Bellomo (red.), A Survey of Models on Tumor Immune Systems Dynamics, Birkhäuser, Boston, 1996.
  • [ABL] L. Arlotti, N. Bellomo, M. Lachowicz, Kinetic equations modelling popula tion dynamics, Transport Theory Statist. Phys. 29 (2000), 125-139.
  • [AC] A. Arneodo, P. Coullet, J. Peyraud, C. Tresser, Strange attractors in Volterra equations for species in competition, J. Math. Biol. 14 (1982), 153-157.
  • [AG] D. Assaf IV, S. Gadbois, Definition of chaos, Amer. Math. Monthly 99 (1992), 865.
  • [AL] L. Arlotti, M. Lachowicz, Qualitative analysis of an equation modelling tumor-host dynamics, Math. Comp. Modelling 23 (1996), 11-29.
  • [As] R. Aris, Mathematical Modelling Techniques, Pitman, San Francisco, 1978.
  • [BA] N. Bellomo, E. De Angelis, Strategies of applied mathematics towards an immuno-mathematical theory on tumors and immune system interactions, Math. Models Methods Appl. Sci. 8 (1998), 1403-1429.
  • [BB] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, On Devaney’s definition of chaos, Amer. Math. Monthly 99 (1992), 332-334.
  • [Bd] M. Bodnar, Delay and ordinary differential equations. Comparison of qualitative behaviour of solutions, RW 00-04 (71), January 2000, Institute of Applied Mathematics and Mechanics, Warsaw University.
  • [Be] H. Byrne, A comparison of the roles of localized and nonlocalized growth factors in solid tumour growth, Math. Models Methods Appl. Sci. 9 (1999), 541-568.
  • [BL] N. Bellomo, M. Lachowicz, Mathematical biology and kinetic theory: Evolution of the dominance in a population of interacting organisms, w: Nonlinear Kinetic Theory and Hyperbolic Systems, V. Boffi i in. (red.), World Sci., London, 1992, 11-29.
  • [Bm] A. Belleni-Morante, Applied Semigroups and Evolution Equations, Oxford Univ. Press, Oxford, 1979.
  • [Bn] H. J. Bremermann, Parasites at the origin of life, J. Math. Biol. 16 (1983), 165-180.
  • [BP] N. Bellomo, A. Palczewski, G. Toscani, Mathematical Topics in Nonlinear Kinetic Theory, World Sci., Singapore, 1988.
  • [Br] M. Bajer, Nie widać kresu drogi, Rzeczpospolita 238/1998.
  • [By] N. Bailey, The Elements of Stochastic Processes with Applications to the Natural Sciences, Wiley, New York, 1964.
  • [Cć] P. Cvitanovic (red.), Universality in Chaos, wyd. II, A. Hilger, Bristol, 1989.
  • [CH] P. Coveney, R. Highfield, Strzałka czasu, Zysk i S-ka, Poznań 1997.
  • [CK] J. F. Crow, M. Kimura, An Introduction to Population Genetics Theory, Harper and Row, New York, 1970.
  • [Cg] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Springer, Berlin, 1977.
  • [Co] V. Capasso, Mathematical Structures of Epidemic System, Springer, New York, 1996.
  • [Da] U. D’Ancona, The Struggle for Existence, Brill, Leiden, 1954.
  • [DH] P. J. Davis, R. Hersh, Świat matematyki, PWN, Warszawa, 1987.
  • [DK] E. B. Dolgosheina, A. Yu. Karulin, A. V. Bobylev, A kinetic model of the agglutination process, Math. Biosci 109 (1992), 1-10.
  • [DL] R. Durrett, S. Levin, The importance of being discrete (and spatial), Theor. Popul. Biol. 46 (1994), 363-394.
  • [Dy] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Redwood City, 1989.
  • [En] A. S. Eddington, Schyłek determinizmu, Wielkie eseje w nauce, M. Gardner (red.), Prószyński i S-ka, Warszawa, 1998.
  • [Es] W. J. Ewens, Mathematical Population Genetics, Springer, Berlin, 1979.
  • [Fel] W. Feller, Die Grundlagen der Volterraschen Theorie der Kampfes ums Dasein in Wahrscheinlichkeitstheoretischer Behandlung, Acta Biotheoretica 5 (1939), 11-40.
  • [Fe2] W. Feller, On the integro-differential equations of purely discontinuous Markoff processes, Trans. Amer. Math. Soc. 48 (1940), 488-515; Errata, ibid. 58 (1945), 474.
  • [Fe3] W. Feller, Wstęp do rachunku prawdopodobieństwa, PWN, Warszawa, 1977.
  • [Fśl] U. Foryś, Interleukin mathematical model of an immune system, J. Biol. Systems 3 (1995), 889-902.
  • [Fś2] U. Foryś, Modele matematyczne w immunologii, w tym numerze.
  • [Gk] J. Gleick, Chaos, Zysk i S-ka, Poznań 1996.
  • [GL] G. Geymonat, J.-L. Lions, Ruolo degli strumenti matematici e numerici nella modellizzazione, Boll. Un. Mat. Ital. (A) 8 (1998), 7-24.
  • [GLe] S, Gueron, S. A. Levin, The dynamics of group formation, Math. Biosci. 128 (1995), 243-264.
  • [GLM] L. Gardini, R. Lupini, M. G. Messia, Hopf bifurcation and transition to chaos in Lotka-Volterra equation, J. Math. Biol. 27, 259-272.
  • [GM] L. Glass, M. C. Mackey, From Clocks to Chaos, The Rhythms of Life, Princeton Univ. Press, Princeton, 1988.
  • [GR] N. S. Goel, N. Richter-Dyn, Stochastic Models in Biology, Academic Press, New York, 1974.
  • [Gy] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer, Dordrecht, 1992.
  • [Hd] J. Hadamard, Théorie des équations aux dérivées partielles, Ed. Sc., Pekin, 1964.
  • [Hg] C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawly, Canad. Entomol. 91 (1959), 293-320.
  • [Hn] R. C. Hilborn, Chaos and Nonlinear Dynamics, Oxford Univ. Press, New York, 1994.
  • [Hr] M. Heller, Uchwycić przemijanie, Znak, Kraków 1997.
  • [HS] J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection, Cambridge Univ. Press, Cambridge, 1988.
  • [HŻ] M. Heller, J. Życiński, A. Michalik (red.), Matematyczność przyrody, OBI przy Wydziale Filozofii Papieskiej Akademii Teologicznej, Kraków, 1992.
  • [Ii] M. Iannelli, The mathematical description of epidemics: some basic models and problems, w: Mathematical Aspects of Human Diseases, G. Da Prato (red.), Appl. Math. Monographs 3, C.N.R., Giardini, Pisa, 1992, 11-32.
  • [JS] E. Jäger, L. Segel, On the distribution of dominance in a population of interacting anonymous organisms, SIAM J. Appl. Math. 52 (1992), 1442-1468.
  • [Kf] A. N. Kolmogoroff, Sulla teoria di Volterra della lotta per l'esistenza, Giorn. Istituto Ital. Attuari 7 (1936), 74-80.
  • [Kg] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.
  • [KM] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. (A) 115 (1927), 700-721.
  • [KMr] S. Karlin, J. L. McGregor, The differential equations of birth and death processes and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85 (1957), 489-546.
  • [Knl] S. Karlin, Equilibrium behavior of population genetics models with non-random mating, J. Appl. Probab. 5 (1968), 231-313, 487-566.
  • [Kn2] S. Karlin, Some mathematical models of population genetics, Amer. Math. Monthly 79 (1972), 699-739.
  • [Ko] T. Kato, On the semi-groups generated by Kolmogoroff’s differential equations, J. Math. Soc. Japan 6 (1954), 1-15.
  • [Kt] R. L. Kraft, Chaos, Cantor sets, and hyperbolicity for the logistic maps, Amer. Math. Monthly 106 (1999), 400-408.
  • [Kz] J. Kudrewicz, Fraktale i chaos, WNT, Warszawa, 1996.
  • [Lal] M. Lachowicz, Asymptotic analysis of nonlinear kinetic equations: The hydrodynamic limits, w: Lecture Notes on Mathematical Theory of the Boltzmann Equation, World Sci., London, 1995, 65-148.
  • [La2] M. Lachowicz, Matematyka chaosu, Matem. Społeczeństwo Nauczanie, OKM, 22, 1999, 21-28.
  • [Lg] D. Ludwig, Stochastic Population Theories, Springer, Berlin, 1974.
  • [Lh] Y. I. Lyubich, Mathematical Structures in Population Genetics, Springer, Berlin, 1992.
  • [LM] A. Lasota, M. C. Mackey, Chaos, Fractals, and Noise, Springer, New York, 1994.
  • [LMW] A. Lasota, M. C. Mackey, M. Ważewska-Czyżewska, Minimizing thera peutically induced anemia, J. Math. Biol. 13 (1981), 149-158.
  • [LP] M. Lachowicz, A. Palczewski, Rachunek prawdopodobieństwa a fizyka, Matem. Społeczeństwo Nauczanie, OKM, 9, 1992, 30-37.
  • [LR] W. Ledermann, G. E. H. Reuter, Spectral theory for the differential equations od simple birth and death processes, Philos. Trans. Roy. Soc. London A 246 (1954), 321-369.
  • [Ls] A. Lasota, Wprowadzenie do dyskusji: Matematyka a filozofia, w: Otwarta nauka i jej zwolennicy, M. Heller, J. Urbaniec (red.), OBI Kraków, Biblos, Tarnów, 1996, 51-61.
  • [Lt] A. J. Lotka, Elements of Mathematical Biology, Dover, New York, 1956.
  • [LWI] M. Lachowicz, D. Wrzosek, Matematyczne modele zjawisk przyrodniczych, Matem. Społeczeństwo Nauczanie, OKM, 15, 1995, 4-15.
  • [LW2] M. Lachowicz, D. Wrzosek, A nonlocal coagulation-fragmentation model, Appl. Math. (Warsaw) 27 (2000), 45-66.
  • [LY] T. Y. Li, J. York, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992.
  • [Lz] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130-141.
  • [Mc] A. G. McKendrick, Application of mathematics to medical problems, Proc. Edinburgh Math. Soc. 44 (1925), 1-34.
  • [Mkl] G. I. Marchuk, Mathematical Models in Immunology, Publ. Div. Optimization Software, New York, 1983.
  • [Mk2] G. I. Marchuk, Mathematical Modelling of Immune Response in Infectious Diseases, Kluwer, Dordrecht, 1997.
  • [MM] K. Mischaikov, M. Mrozek, Chaos in the Lorenz equation: a computer-assisted proof, Bull. Amer. Math. Soc. 33 (1995), 66-72.
  • [MMr] D. B. Meade, F. A. Milner, S-I-R epidemic models with directed diffusion, w: Mathematical Aspects of Human Diseases, G. Da Prato (red.), Appl. Math. Monographs 3, C.N.R., Giardini, Pisa 1992, 79-90.
  • [Mn] T. Mullin, The Nature of Chaos, Clarendon Press, Oxford.
  • [MO] H. Matsuda, N. Ogita, A. Sasaki, K. Satō, Statistical mechanics of population, Progr. Theoret. Phys. 88 (1992), 1035-1049.
  • [MP] R. H. Martin, M. Pierre, Nonlinear reaction-diffusion systems, w: Nonlinear Equations in the Applied Sciences, W. F. Ames, C. Rogers (red.), Academic Press, Boston, 1992, 363-398.
  • [Mr] J. Murray, Mathematical Biology, Springer, Berlin, 1989.
  • [My] R. M. May, Stability and Complexity in Model Ecosystems, II wyd., Princeton Univ. Press, Princeton, 1974.
  • [Oo] A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer, New York, 1980.
  • [OS] M. R. Owen, J. A. Sherrat, Mathematical modelling of macrophage dynamics in tumors, Math. Models Methods Appl. Sci. 9 (1999), 513-540.
  • [Ot] E. Ott, Chaos w układach deterministycznych, WNT, Warszawa, 1997.
  • [Pp] K. Popper, Wiedza obiektywna. Ewolucyjna teoria epistemologiczna, PWN, Warszawa, 1992.
  • [PR] H. O. Peitgen, P. H. Richter, The Beauty of Fractals, Springer, Berlin, 1986.
  • [Pu] E. C. Pielou, An Introduction to Mathematical Ecology, Wiley, New York, 1969.
  • [Py] I. P. Pavlotsky, Równania Własowa dla układów dynamicznych Volterry, Dokl. AN SSSR 285 (1985), 331 (ros.).
  • [Re] D. Ruelle, Chaotic Evolution and Strange Attractors, Cambridge Univ. Press, Cambridge, 1989.
  • [Ril] L. M. Ricciardi, Diffusion Processes and Related Topics in Biology, Springer, Berlin, 1974.
  • [Ri2] L. M. Ricciardi, Stochastic population theory: birth and death processes, w: Mathematical Ecology, T. G. Hallam, S. A. Levin (red.), Springer, Berlin 1986, 155-190.
  • [Ri3] L. M. Ricciardi, Stochastic population theory: diffusion processes, w: Mathematical Ecology, T. G. Hallam, S. A. Levin (red.), Springer, Berlin 1986, 191-238.
  • [RR] A. Rescigno, I. W. Richardson, The deterministic theory of population dynamics, Foundations of Mathematical Biology, vol. III, R. Rosen (red.), Academic Press, New York, 1973.
  • [Sh] M. Smoluchowski, Versuch einer mathematischen Theorie der kolloiden Lösungen, Z. Phys. Chem. 92 (1917), 129-168.
  • [Si] M. Szydłowski, Czy Pan Bóg gra w kości?, w: Kosmos i filozofia, Z. Golda, M. Heller (red.), Biblos, Tarnów, OBI, Kraków, 1994, 93-105.
  • [Sk] W. Szlenk, Wstęp do teorii gładkich układów dynamicznych, PWN, Warszawa, 1982.
  • [So] F. M. Scudo, Vito Volterra and theoretical ecology, Theor. Popul. Biol. 2, 1-23.
  • [Sr] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983.
  • [St] I. Stewart, Czy Bóg gra w kości, PWN, Warszawa, 1995.
  • [Tk] M. Tempczyk, Świat harmonii i chaosu, PIW, Warszawa, 1995.
  • [Tn] C. J. Thompson, Mathematical Statistical Mechanics, Princeton Univ. Press, Princeton, 1972.
  • [Ui] J. Uchmański, Klasyczna ekologia matematyczna, PWN, Warszawa, 1992.
  • [VI] V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, R. Comitato Talassografico Italiano, Memoria 131 (1927), 1-142.
  • [V2] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris 1931.
  • [WL] M. Ważewska-Czyżewska, A. Lasota, Matematyczne problemy dynamiki układu krwinek czerwonych, Mat. Stos. 6 (1976), 23-40.
  • [Wkl] D. Wrzosek, Limit cycles in predator-prey models, Math. Biosci. 98 (1990), 1-12.
  • [Wk2] D. Wrzosek, Osobliwe własności rozwiązań układu równań Smoluchowskiego, Wiadom. Mat. 35 (1999), 11-35.
  • [Wr] E. P. Wigner, The unreasonable effectiveness of mathematics in the natural sciences, Comm. Pure Appl. Math. 13 (1960), 1-14 (polskie tłumaczenie: Niepojęta skuteczność matematyki w naukach przyrodniczych, Zagad. Filozof, w Nauce, XIII, OBI, Kraków, 1991, 5-18).
  • [Ye] G. U. Yule, A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, Philos. Trans. Roy. Soc. B 213 (1924), 21-87.
  • [Ż] T. Żylicz, Wykłady z równań różniczkowych i różnicowych dla studentów ekonomii, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, 1988.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0008-0097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.