PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Związki selenu w środowisku naturalnym

Autorzy
Identyfikatory
Warianty tytułu
EN
Selenium compounds in the environment
Języki publikacji
PL
Abstrakty
EN
From the time selenium was discovered in 1817 by Berzelius, until the recognition in the late 1950s of its toxicity and, subsequently, its essentiality for humans, a large number of its properties have been elucidated. Apart from natural sources (mainly metal-sulfur minerals) selenium compounds can widely spread throughout the environment as a result of combustion of coals and its uses in the glass and electronic industries. Natural waters, soils and air are the most commonly studies environmental media. Selenium naturally exists in several oxidation states and in inorganic and organic forms. The inorganic selenium species most frequently found in waters and soils are selenite (SeO32-) and selenate (SeO42-).Selenites have high affinity for metal hydroxide and are adsorbed onto insoluble compounds. Under acidic conditions they are rapidly reduced to elemental red selenium. Alkaline and oxidising conditions favour the formation and stabilisation of selenate. Several organoselenium compounds have been identified with direct Se-C bound including methylated species, selenoamino acids, selenoproteins and their derivatives. Inorganic selenium compounds can be transformed into volatile species such as dimethylselenide - (CH3) 2Se and dimethyldiselenide - (CH3) 2Se2 through microbial action. These methylation reactions are considered to be detoxification steps, because methylated compounds are less toxic. Selenium has been recognised as an essential nutrient for humans based on its presence in the enzyme glutathione peroxidase, which affords cell protection against oxidative damage. Its compounds also catalyse the reactions of intermediate metabolism and inhibit the toxic effects of heavy metals, such as lead, cadmium and mercury. The recommended daily dietary allowances of selenium for adult humans is in the range of 50 - 70. On the other hand, there is also some evidence that in higher concentration toxicity effect of this element can occur. The maximum recommended selenium concentration in drinking water is 10 mg/dm3. As physiological effect of selenium have been realised in recent years, there has been increasing interest in the trace determination of this metal. The analytical methods for selenium determination in different matrices have been recently reviewed. However, selenium reactivity and bioavailability depend not only on its total amount. Additional knowledge of the chemical forms and oxidation states in which this element exist is needed. Compared with the extensive investigations on total selenium or selenite and selenate determination, very little work has been done with organic selenium compounds, especially in foods. Selenomethionine (probably the major form of selenium in cereals) is retained in tissue proteins to a much greater extent. Intake of other forms of selenium, such as selenite or selenocysteine will be excreted in the urine if it occurs in the excess.
Słowa kluczowe
Rocznik
Strony
139--150
Opis fizyczny
wykr., bibliogr. 46 poz.
Twórcy
  • Wydział Chemii, Uniwersytet Warszawski ul. Pasteura 1, 02-093 Warszawa
  • Wydział Chemii Uniwersytet Warszawski ul. Pasteura 1, 02-093 Warszawa
Bibliografia
  • [1] F. Seby, M. Potin-Gautier, E. Giffaut, O. F. X. Donard, Analusis, 1997, 26, 193.
  • [2] A. Kabata-Pendias, H. Pendias, Biogeochemia pierwiastków śladowych, PWN, Warszawa 1993.
  • [3] R. M. Olivas, O. F. X. Donard, C. Camara, P. Queaviller, Anal. Chim. Acta 286 1994, 357.
  • [4] Environmental Protection Agency, Drinking Water and Health, Recommendation of National Academy of Sciences, Federal Registration, 1977, 42, 3573.
  • [5] G. R. Jayaweera, J. W. Bigger, Soil Sei. Soc. Am. J., 1996, 60, 1056.
  • [6] I. J. Pickering, G. E. Brown, T. K. Tokunaga, Environ. Sei. Technol., 1995, 29, 2456.
  • [7] T. K. Tokunaga, G. E. Brown, I. J. Pickering, S. R. Sutton, S. Bajt, ibid., 1997, 31, 1419.
  • [8] S. C. Tam, A. Chow, D. Hadley, Sei. Total Environ., 1995, 160, 1.
  • [9] K. Saeki, S. Matsumoto, R. Tatsukawa, Soil Sei., 1995, 160, 265.
  • [10] E. E. Van der Hoeck, R. N. Comas, Environ. Sei. Technol., 1996, 30, 517.
  • [11] D. C. Reamer, W. H. Zoller, Science, 1980, 208, 500.
  • [12] N. Terry, C. Carlson, T. K. Raab, A. M. Zayed, J. Environ. Qual., 1992, 21, 341.
  • [13] J. M. Besser, J. N. Huckins, R. C. Clark, Chemosphere, 1994, 29, 771.
  • [14] T. Perez-Corona, Y. Madrid, C. Camara, Anal. Chim. Acta, 1997, 345, 249.
  • [15] M. A. Beilstein , P. D. Whanger, G. Q. Yang, Biomed. Environ. Sei., 1991, 4, 390.
  • [16] Praca zbiorowa, Toksykologia, PZWL, Warszawa 1994.
  • [17] R. F. Burke, J. Nutr., 1996, 116, 1584.
  • [18] A. Jendryczko, Wiad. Lek. 1994, 47, 198.
  • [19] D. C. Thomson, Analyst, 1998, 123, 827.
  • [20] R. A. Zíngaro, W. C. Cooper, Selenium, Van Nostrand Reinhold, New York 1974.
  • [21] H. E. Ganther, C. Corcoran, Biochemistry, 1969, 8 , 2557.
  • [22] R. A. Sunde, Annu. Rev. Nutr., 1990, 10, 451.
  • [23] K. Bonenberg, Aura, 1996, H, 27.
  • [24] World Health Organization, Trace Elements in Human Nutrition and Health, Genewa 1996.
  • [25] X. Dauchy, M. Potin-Gautier, A. Astruc, Fresenius J. Anal. Chem., 1994, 117, 447.
  • [26] K. Pyrzyńska, Chem. Anal. (Warsaw), 1995, 40, 792.
  • [27] K. Pyrzyńska, Analyst, 1996, 21, 77R.
  • [28] M. F. Robinson , C. D. Thomson, P. K. Heummer, N. Z. Med. J., 1985, 98, 727.
  • [29] P. C. Uden, S. M. Bird, M. Kotrebai, P. Nolibos, J. F. Tyson, E. Block, E. Denoyer, Fresenius J. Anal. Chem., 1998, 362, 447.
  • [30] B. Michalke, ibid., 1995, 351, 670.
  • [31] Y. Kang, H. Yamada, K. Kyuma, T. Hattori, Soil Sei. Plant Nutr., 1993, 39, 331.
  • [32] C. Casiot, J. Szpunar, R. Łobiński, M. Potin-Gautier, J. Anal. Atom. Spectrom., 1999, 14, 645.
  • [33] C. Casiot, V. Vacchina, H. Chassaigne, J. Szpunar, M. Potin-Gautier, R. Cobinski, Anal. Commun., 1999, 36, 77.
  • [34] M. Cooke, E. Bruland, Environ. Sei. Technol., 1987, 21, 1214.
  • [35] A. D. Ulivo, P. Papoff, J. Anal. Atom. Spectrom., 1986, 1, 479.
  • [36] G. Tänzer, K G. Haumann, Atmos. Environ., 1990, 24A, 3099.
  • [37] U. Örnemark, J. Pettersson , A. Olin, Talanta, 1992, 39, 1089.
  • [38] M. Potin-Gautier, M. Astruc, P. Vermelin, Analusis, 1992, 20, 73.
  • [39] G. Kolbl, K. Kalcher, K. Irgolic, Anal. Chim. Acta, 1993, 284, 301.
  • [40] M. G. Cobo-Fernandez, M. A. Palacios, D. Chakraborti, P. Queuviller, C. Camara, Fresenius J. Anal. Chem., 1995, 351, 438.
  • [41] J. Cai, M. Cabanas, J. L. Fernandez-Turiel, M. Abalos, M. J. Bayona, Anal. Chim. Acta, 1995, 314, 183.
  • [42] K. Kolbl, Marine Chem., 1995, 48, 185.
  • [43] J. Aller, C. Robles, Analyst, 1998, 123, 919.
  • [44] N. Gilon, M. Potin-Gautier, J. Chromatogr., 1996, 732A, 369.
  • [45] M. Gonzalez LaFuente, M. Dlasko, M. L. Fernendez-Sanchez, A. Sanz-Medel, J. Anal. Atom. Spectrom., 1998, 13, 423.
  • [46] D. Behne, Analyst, 1992, 117, 555.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0008-0057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.