Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Density functional theory: foundations, Kohn-Sham realization, and concepts for chemistry
Języki publikacji
Abstrakty
Thirty five years after Hohenberg and Kohn discovered in 1964 that the electronic density r(r) can be used as the basic quantity in the rigorous formulation od the theory of electronic structure of matter, the modern density functional theory (DFT) has developed into an already mature discipline, which offers both attractive computational tools for applications in physics, chemistry and molecular biology, and a new conceptual framework for predicting and rationalizing preferences in chemical processes. Computational advances, originating from the other, almost as old historical development by Kohn and Sham (KS) in 1965, have demonstrated that the accuracy of the modern DFT software in the mostly ground-state applications has reached the level of the 3chemical accuracy 1, comparable to that offered by the sophisticated and prohibitively expensive traditional quantum chemistry methods, which explicitly determine the correlated N-electron wavefunction of a molecular system. The importance of these two branches of computational quantum chemical methods in modern chemistry has been recognized by the 1998 Nobel Prize for Chemistry [W. Kohn (density theory) and J.A. Pople (wavefunction theory)]. The Hohenberg-Kohn/Kohn-Sham theories have been generalized to thermal ensembles, multicomponent systems, spin and orbital paramagnetism, and superconductivity. The recent developments also cover the relativistic and excited-states theories, time dependent systems and the DFT for sybsystems, the latter being of paramount importance for the theory of chemical reactivity. The applications of DFT range from the ground-state properties of solids, through calculations on molecular systems of chemical/biological importance to high temperature plasmas. A combinations of DFT with molecular dynamics has prompted a spectacular progress in calculations on the ion dynamics in solids and the equilibrium structures of large molecular clusters with up to ~10(2) atoms. Very recently, progress has also been made in developing approaches behaving linearly with the number of electrons, which show promise of handling truly large systems consisting of ~10(3) atoms This spectacular success of the computational DFT is matched by its conceptual significance in chemistry. DFT gave a new impetus for developing novel, more reliable reactivity criteria and offered a new thermodynamical outlook on elementary chemical processes. It has soon been discovered that DFT provides the rigorous basis for defining many classical chemical concepts, which had originally been introduced on intuitive/phenomenological grounds, e.g., the electronegativity and hardness/softness characteristics of the electronic distribution in molecules. It resulted in more rigorous theoretical justifications of important rules of chemistry, soon to be followed by general variational principles for chemistry, which both elegantly united many facets of the electronic structure/chemical reactivity facts, and allowed for more accurate predictions of behaviour of chemical species. Despite this success of DFT, the knowledge of its basic theorems and generalizations is not widespread among chemists, to the best knowledge of the Author. Even in the university quantum chemistry course this subject is rarely mentioned, with the methodological core usually covering exclusively the traditional Hartree-Fock (HF) molecular orbital theory and its configuration interaction (CI) extensions. Little is known, for example, about the conceptual advantages of the Kohn-Sham orbitals over their HF counterparts, and the physical interpretation of the former. This review article, written in response to a kind invitation of this Journal Editor, attempts to fill this gap. This monographical survey covers the Hohenberg-Kohn theorems and their ensemble extensions due to Mermin, elements of the Kohn-Sham and Kohn-Sham-Mermin theories, and rudiments on the crucial density functional for the exchange-correlation energy. The discussion of the KS approach includes the KS equations for the optimum canonical orbitals and an analysis of the physical significance of the KS molecular orbitals, corresponding to a fictitious system of non-interacting electrons. The general form of the crucial functional for the exchange-correlation energy E(xc)[r] is summarized and the density scaling argument for its Local Density Approximation and the first nonlocal (density gradient) correction is presented. A general form of E(xc)[r] in terms of the exchange-correlation hole is introduced and specific examples of the non-local exchange and correlation functionals are given. Finally, some advantages of the related orbital dependent functionals E(xc)[{fi[r]}] used in the Optimized Effective Potential method are briefly mentioned. An emphasis is also placed upon selected concepts for chemistry. In particular characteristics of the electronic "gas" in open molecular systems, covering the chemical potential (negative electronegativity), Fukui function, and the absolute measures of the chemical hardness (softness), are discussed in a more detail, including their behaviour in the zero temperature limit. It is argued that DFT facilitates a thermodynamical-like description of the polarization and charge-transfer phenomena in molecular systems, e.g., those accompanying interaction between reactants, adsorbate and substrate in heterogeneous catalysis, etc.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--51
Opis fizyczny
Bibliogr. 87 poz.
Twórcy
autor
- Zakład Chemii Teoretycznej im. K. Gumińskiego, Uniwersytet Jagielloński ul. R. Ingardena 3, 30-060 Kraków
Bibliografia
- [1] P. Hohenberg, W. Kohn, Phys. Rev, 1964, 136, B864.
- [2] W. Kohn, L. J. Sham, ibid., 1965, 140, A1133.
- [3] N. D. Mermin, ibid., 1965, 137A, 1441.
- [4] S. Lundqvist, N. H. March (red.), Theory o f the Inhomogeneous Electron Gas, Plenum, New York 1983; J. Keller, J. L. Gazquez (red.), Density Functional Theory, Lecture Notes in Physics, Vol. 187, Springer-Verlag, Berlin 1983; R. Erdahl, V. H. Smith (red.), Density Matrices and Density Functionals, Reidel, Dordrecht 1987; R. O. Jones, O. Gunnarsson, Rev. Mod. Phys. 1989, 61, 689; E. S. Kryachko, E. V. Ludefia, Energy Density Functional Theory o f Many-Electron Systems, Kluwer, Dordrecht 1990; S. B. Trickey (red.), Density Functional Theory of Many Fermion Systems, Adv. Quantum Chem., Vol. 21, Academic, San Diego 1990; J. Labanowski, J. Andzelm (red.), Theory and Applications of Density Functional Methods in Chemistry, Springer-Verlag, New York 1991; J. M. Seminario, P. Politzer (red.), Modem Density Functional Theory: A Tool for Chemistry, Elsevier, Amsterdam 1995; D. E. Ellis (red.), Electronic Density Functional Theory of Molecules, Clusters and Solids, Kluwer, Dordrecht 1995.
- [5] R. M. Dreizler, J. da Providencia (red.), Density Functional Methods in Physics, NATO ASI, Series B: Physics, Vol. 123, Plenum, New York 1985.
- [6] R. G. Parr, W. Yang, Density Functional Theory o f Atoms and Molecules, Oxford, New York 1989.
- [7] R. M. Dreizler, E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer-Verlag, Heidelberg 1990.
- [8] E. K. U. Gross R. M. Dreizler (red.), Density Functional Theory, NATO ASI, Series B: Physics, Vol. 337, Plenum, New York 1995.
- [9] R. F. Nalewajski (red.), Proceedings of the Satellite Symposium on „Thirty Years of Density Functional Theory: Concepts and Applications", Int. J. Quantum Chem., 1995,56 (Issues 4-6).
- [10] R. F. Nalewajski (red.), Density Functional Theory: I - Functionals and Effective Potentials: II - Relativistic and Time Dependent Extensions; III - Interpretation, Atoms, Molecules and Clusters; IV - Theory of Chemical Reactivity, Topics in Current Chemistry, Vols. 180-183, Springer-Verlag, Heidelberg 1996.
- [11] R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys., 1978, 68, 801.
- [12] R. S. Mulliken, ibid., 1934, 2, 782.
- [13] L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell, Ithaca 1960.
- [14] R. T. Sanderson, J. Am. Chem. Soc., 1952, 74, 272; Chemical Periodicity, Reinhold, New York 1960; Chemical Bonding and Bond Energy, Academic Press, New York 1976.
- [15] K. D. Sen, C. K. Jorgensen (red.), Electronegativity, Structure and Bonding, 1987, 66.
- [16] L. H. Thom as, Proc. Cambr. Phil. Soc., 1927, 23, 542.
- [17] E. Fermi, Rend. Accad. Lincei, 1927, 6, 602; ibid., 1928, 7, 342; Z. Phys. 1928, 48, 73;
- E. Fermi, E. Amaldi, Accad. Ital. Rome, 1934, 6, 117.
- [18] P. A. M. Dirac, Proc. Cambr. Phil. Soc., 1930, 26, 376.
- [19] N. H. M arch, Self-Consistent Fields in Atoms, Pergamon, Oxford 1975.
- [20] C. F. von Weizsacker, Z. Phys., 1935, 96, 431.
- [21] J. C. Slater, Phys. Rev., 1951,81, 385; Adv. Quantum Chem., 1972, 6, 1; The Self-Consistent Field for Molecules and Solids: Quantum Theory of Molecules and Solids, McGraw Hill, New York 1974; Vol. 4.
- [22] J. P. Dahl, J. Avery (red.), Local Density Approximations in Quantum Chemistry and Solid-State Physics, Plenum, New York 1984.
- [23] G. L. Oliver, J. P. Perdew, Phys. Rev., 1979, A20, 397.
- [24] R. G. Parr, W. Yang, Annu. Rev. Phys. Chem., 1995, 46, 701.
- [25] T. Ziegler, Chem. Rev., 1991, 91, 651.
- [26] D. R. Salahub, [w:] D. R. Salahub, N. Russo (red.), Metal-Ligand Interactions: from Atoms, to Clusters, to Surfaces, Kluwer, Dordrecht 1992, s. 311.
- [27] (a) W. Yang, Phys. Rev. Lett., 1991, 66, 1438; Phys. Rev. 1991, A44, 7823; P. D. York, J. Ping Lu, W. Yang, ibid., 1994, B49, 8526; W. Yang, wykład wygłoszony na Międzynarodowym Sympozjum: „Thirty Years of Density Functional Theory: Concepts and Applications”, Kraków, 13-16 czerwca 1994; (b) R. P is Diez, M. P. Iniguez, Int. J. Quantum Chem., 1995, 56, 689.
- [28] W. Kohn, Chem. Phys. Lett., 1993, 208, 167; Int. J. Quantum Chem., 1995, 56, 229.
- [29] G. Galii, M. Parinello , Phys. Rev. Lett., 1992, 69, 1077.
- [30] R. G. Parr, W. Yang, J. Am. Chem. Soc., 1984,106,4049; W. Yang, R. G. Parr, Proc. Natl.Acad. Sci. USA, 1985, 82, 6723.
- [31] R. G. Parr, R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512; R. F. Nalewajski ibid., 1984, 106, 944; R. G. Pearson, J. Chem. Educ., 1987, 64, 561.
- [32] R. F. Nalewajski J. Phys. Chem., 1985, 89, 2831; M. Berkowitz, S. K. Ghosh, R. G. Parr, J. Am. Chem. Soc., 1985,107, 6811; M. Berkowitz, R. G. Parr, J. Chem. Phys., 1988, 88, 2554.
- [33] Z. Zhou, R. G. Parr, J. Am. Chem. Soc., 1989, 111, 7371; ibid., 1990; 112, 5720; Z. Zhou, R. G. Parr, J. F. Garst, Tetrahedron Lett., 1988, 29, 4843.
- [34] R. G. Parr, P. K. C hattaraj, J. Am. Chem. Soc., 1991, 113, 1854; P. K. Chattaraj, A. Cedillo, R. G. Parr, J. Chem. Phys., 1995, 103, 7645.
- [35] P. Fuentealba, R. G. Parr, J. Chem. Phys., 1991, 94, 5559.
- [36] B. G. Baekelandt, G. O. A. Janssens, H. Toufar, W. J. Mortier, R. A. Schoonheydt, R. F. Nalewajski, J. Phys. Chem., 1995, 99, 9784.
- [37] R. F. Nalewajsk i, J. Korchowiec, J. Mol. Catal., 1989, 54, 324; Acta Phys. Polon., 1989, A76, 747.
- [38] R. F. Nalewajski, Int. J. Quantum Chem., 1991, 40, 265; (Errata, ibid., 1992, 43,443); 1992, 42, 243; 1994, 49, 675; 1995, 56, 453; 1997, 61, 181; 1998, 69, 591; Polish J. Chem., 1998, 72, 1763.
- [39] J. Ciosłowski, B. B. Stefanov, J. Chem. Phys., 1993, 99, 5151.
- [40] P. Senet, ibid., 1996, 105, 6471.
- [41] R. F. Nalewajski, J. Korchowiec, J. Mol. Catal., 1996, 112, 167.
- [42] R. F. Nalewajski, A. Michalak, J. Phys. Chem., 1996,100,20076; J. Phys. Chem. A, 1998, 102, 636; Int. J. Quantum Chem., 1995, 56, 603.
- [43] A. K. Chandra, A. Michalak, M. T. Nguyen, R. F. Nalewajski, J. Phys. Chem. A, 1998, 102, 100182.
- [44] K. D. Sen (red.), Chemical Hardness, Structure and Bonding, Vol. 80; Springer-Verlag, Berlin 1993.
- [45] R. F. Nalewajski, J. Korchowiec, Charge Sensitivity Approach to Electronic Structure and Chemical Reactivity, World-Scientific, Singapore 1997.
- [46] R. F. Nalewajski, w. [8], s. 115.
- [47] R. F. Nalewajski, J. Korchowiec, A. Michalak w [10] (IV), s. 25.
- [48] M. H. Cohen, w [10] (IV), s. 143.
- [49] W. J. Mortier, R. A. Schoonheydt (red.), Developments in the Theory of Chemical Reactivity and Heterogeneous Catalysis, Research Signpost, Trivandrum 1997.
- [50] R. F. Nalewajski, Phys. Chem. Chem. Phys., 1999, 1, 1037.
- [51] R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533; Science 1966, 151, 172; Hard and Soft Acids and Bases, Dowden, Hutchinson and Ross, Stroudsburg, 1973, C. K. Jorgensen, Inorg. Chem., 1964, 3, 1201.
- [52] K. Gumiński, Elementy chemii teoretycznej, PWN, Warszawa 1964; K. Gumiński, P. Petelen z, Elementy chemii teoretycznej, PWN, Warszawa 1989; P. W. A. Atkins, Molekularna mechanika kwantowa, PWN, Warszawa 1974; W. Kolos, Chemia kwantowa, PWN, Warszawa 1978; A. Gołębiowski, Elementy mechaniki i chemii kwantowej, PWN, Warszawa 1982; 1984; R. F. Nalewajski, Podstawy i metody chemii kwantowej, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 1998; W. Kolos, J. Sadlej, Atom i cząsteczka, WNT, Warszawa 1998; R. F. N alew ajski, Wykłady z podstaw i metod chemii kwantowej, PWN, Warszawa, w druku.
- [53] T. L. G ilbert, Phys. Rev., 1975, B12, 2111.
- [54] M. Levy, Proc. Natl. Acad. Sci. USA, 1979, 76, 6062.
- [55] J. E. Harrimann, Phys. Rev., 1981, A24, 680.
- [56] N. H. March, ibid., 1982, A26, 1845.
- [57] G. Zumbach, K. Maschke, ibid., 1984, A28, 544; 1984, A29, 1585.
- [58] R. P. Iczkowski, J. L. Margrave, J. Am Chem. Soc., 1961, 83, 3547.
- [59] R. F. Nalewajski, Acta Phys. Polon., 1990, A77, 817.
- [60] E. P. Gyftopoulos, G. N. Hatsopo los, Proc. Natl. Acad. Sci. USA, 1968, 60, 786.
- [61] J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Phys. Rev. 1982, 49,1691; J. P. Perdew w [5], s. 265; R. van Leeuwen, O. V. G ritsen ko, E. J. Baerends, w [10] (/), s. 107.
- [62] R. F. Nalewajski, P. M. Kozłowski, Acta Phys. Polon., 1986, A70, 457.
- [63] L. Szasz, I. Berrios-Pagan, G. McGinn, Z. Naturforsch. 1975, 30a, 1516.
- [64] M. Levy, w [8], s. 11; M. Levy, A. Gorling, Philos. Mag. 1994, B69, 763; Int. J. Quantum Chem., 1995, 56, 385; A. G orling, M. Levy, J. P. Perdew, Phys. Rev., 1993, B47, 1167; M. Levy, J. P. Perdew, ibid., 1985, A32, 2010; 1993, B48, 11638; Int. J. Quantum Chem., 1994, 49, 539.
- [65] J. F. Janak, Phys. Rev., 1978, B18, 7165.
- [66] T. Koopmans, Physica, 1933, 1, 104.
- [67] K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys., 1952, 20, 722; K. Fukui, T. Y onczawa, C. Nagata, H. Shingu, ibid., 1954, 22, 1433; K. Fuku., Theory of Orientation and Stereoselection, Springer-Verlag, Heidelberg 1973, Science, 1982, 218, 747.
- [68] R. F. Nalewajski, R. G. Parr, J. Chem. Phys., 1982, 77, 399.
- [69] D. M. Ceperley, Phys. Rev., 1978, B18, 3126; D. M. Ceperley, B. J. Alder, Phys. Rev. Lett., 1980, 45, 566.
- [70] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 1980, 58, 1200.
- [71] G. L. Oliver, J. P. Perdew, Phys. Rev., 1979, A20, 397.
- [72] U. von Barth, L. Hedin, J. Phys., 1972, C5, 1629.
- [73] J. Harris, R. O. Jones, J. Phys., 1974, F4, 1170; J. Harris, Phys. Rev., 1984, A29, 1648; D.
- C. Langreth, J. P. Perdew, Solid State Commun., 1975, 17, 1425; Phys. Rev., 1976, B13, 4274; J. P. Perdew , w [5], s. 265; O. G unnarson, B. I. Lundq vist, Phys. Rev., 1976, BI3, 4274.
- [74] R. F. Nalewajski, Adv. Quantum Chem., w druku.
- [75] J. P. Perdew, w [8], s. 51; K. Burke, J. P. Perdew , Int. J. Quantum Chem., 1995, 56, 199; M. Ernzerhof, J. P. Perdew, K. Burke, w [10] (I), s. 1.
- [76] A. D. Becke, Phys. Rev., 1988, A38, 3098.
- [77] J. P. Perdew, Y. Wang, ibid., 1986, B33, 8800; 1986, B34, 7406(E).
- [78] J. P. Perdew, ibid., 1986, B33, 8822.
- [79] D. C. Langreth, M. J. Mehl, ibid., 1983, B28, 1809.
- [80] C. Lee, W. Yang, R. G. Parr, ibid., 1988, B37, 785.
- [81] R. Colle, D. Salvetti, Theor. Chim. Acta, 1975, 37, 329; J. Chem. Phys., 1983, 79 1404.
- [82] A. Berces, T. Ziegler, w [10] (III), s. 41; G. Schreckenbach , T. Ziegler, J. Li, Int. J. Quantum. Chem., 1995, 56, 477.
- [83] W. Kohn, w [8], s. 3.
- [84] J. B. Krieger, Y. Li, G. J. Iafrate, w [8], s. 191; Phys. Lett., 1990, A148, 470; Phys. Rev 1992, A45, 101; ibid., 1992, A46, 5453.
- [85] J. P. Perdew , A. Zunger, Phys. Rev., 1981, B23, 5048.
- [86] M. L evy [w:] R. Erdahi, V. H. Smith, Jr. (red.), Density Matrices and Density Functionals, Reidel, New York 1987; A. Gorling, M. Levy, Int. J. Quantum Chem., 1995, S29, 93. J. Ciosłowski, R. L opez-Boada, J. Chem. Phys., 1998, 109, 4156.
- [87] R. M cW eeny, Methods of Molecular Quantum Mechanics, Academic Press, London
- 1989.
- [85] J. P. Perdew , A. Zunger, Phys. Rev., 1981, B23, 5048.
- [86] M. Levy [w:] R. Erdahi, V. H. Smith, Jr. (red.), Density Matrices and Density Functionals, Reidel, New York 1987; A. Gorling, M. Levy, Int. J. Quantum Chem., 1995, S29, 93. J. Ciosłowski, R. Lopez-Boada, J. Chem. Phys., 1998, 109, 4156.
- [87] R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, London 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0008-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.